cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267228 Number of length-n 0..4 arrays with no following elements greater than or equal to the first repeated value.

Original entry on oeis.org

5, 25, 110, 470, 1980, 8274, 34396, 142474, 588596, 2426738, 9989292, 41065818, 168636772, 691859842, 2836150748, 11617837802, 47559474708, 194575978386, 795613053964, 3251559375226, 13282278193604, 54232112235170
Offset: 1

Views

Author

R. H. Hardin, Jan 12 2016

Keywords

Comments

Column 4 of A267232.

Examples

			Some solutions for n=6:
..1....0....0....4....0....4....1....2....2....0....1....1....2....3....1....3
..4....4....3....2....1....4....2....3....0....2....3....4....0....1....3....1
..3....2....2....3....0....0....0....2....1....2....2....1....3....4....0....2
..0....4....3....1....4....3....1....0....2....1....1....3....4....0....2....3
..4....0....2....0....2....3....4....4....4....0....3....1....2....3....0....0
..2....2....2....0....1....0....0....3....1....0....1....3....3....3....3....4
		

Crossrefs

Cf. A267232.

Formula

Empirical: a(n) = 14*a(n-1) -75*a(n-2) +190*a(n-3) -224*a(n-4) +96*a(n-5) for n>6.
Conjectures from Colin Barker, Feb 05 2018: (Start)
G.f.: x*(5 - 45*x + 135*x^2 - 145*x^3 + 20*x^4 + 24*x^5) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)^2).
a(n) = (2*(-3*2^(1+n) - 8*3^n + 41*4^n - 8) + 3*4^n*n) / 48 for n>1.
(End)