A267229 Number of length-n 0..5 arrays with no following elements greater than or equal to the first repeated value.
6, 36, 195, 1030, 5375, 27854, 143695, 738990, 3791775, 19421854, 99344735, 507597950, 2591191375, 13217410254, 67376465775, 343259079310, 1747901098175, 8896431461054, 45262405898815, 230195833919070, 1170328696616175, 5948113914182254, 30221815238075855
Offset: 1
Keywords
Examples
Some solutions for n=6: ..4....2....5....3....4....5....0....0....2....5....4....2....3....3....3....1 ..3....1....4....3....5....2....3....3....5....1....3....5....0....4....5....5 ..5....4....1....0....1....4....2....1....5....3....4....2....4....4....4....3 ..2....1....2....2....4....5....3....5....1....4....3....0....4....1....4....2 ..2....5....3....2....5....3....0....0....0....0....4....2....2....1....1....0 ..1....3....1....2....0....5....0....5....3....4....4....3....2....1....2....2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A267232.
Formula
Empirical: a(n) = 20*a(n-1) -160*a(n-2) +650*a(n-3) -1399*a(n-4) +1490*a(n-5) -600*a(n-6) for n>7.
Conjectures from Colin Barker, Feb 05 2018: (Start)
G.f.: x*(6 - 84*x + 435*x^2 - 1010*x^3 + 969*x^4 - 172*x^5 - 120*x^6) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 5*x)^2).
a(n) = (-5*(15 + 5*2^(1+n) + 10*3^n + 15*4^n - 97*5^n) + 12*5^n*n) / 300 for n>1. (End)
Comments