A267232 T(n,k)=Number of length-n 0..k arrays with no following elements greater than or equal to the first repeated value.
2, 3, 4, 4, 9, 5, 5, 16, 21, 6, 6, 25, 54, 47, 7, 7, 36, 110, 176, 103, 8, 8, 49, 195, 470, 564, 223, 9, 9, 64, 315, 1030, 1980, 1790, 479, 10, 10, 81, 476, 1981, 5375, 8274, 5646, 1023, 11, 11, 100, 684, 3472, 12327, 27854, 34396, 17732, 2175, 12, 12, 121, 945, 5676
Offset: 1
Examples
Some solutions for n=6 k=4 ..3....3....1....0....4....0....3....2....4....2....4....4....4....1....0....1 ..1....4....4....2....4....2....1....0....3....3....2....3....1....4....1....2 ..0....2....4....0....2....0....0....3....4....2....1....0....0....3....3....0 ..2....0....3....4....2....3....1....2....4....2....2....1....3....2....0....2 ..4....2....1....0....1....1....4....3....1....1....0....4....0....1....3....0 ..4....1....0....4....2....2....4....2....0....1....2....4....2....4....2....3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..9999
Crossrefs
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1) -a(n-2) for n>3
k=2: a(n) = 5*a(n-1) -8*a(n-2) +4*a(n-3) for n>4
k=3: a(n) = 9*a(n-1) -29*a(n-2) +39*a(n-3) -18*a(n-4) for n>5
k=4: a(n) = 14*a(n-1) -75*a(n-2) +190*a(n-3) -224*a(n-4) +96*a(n-5) for n>6
k=5: [order 6] for n>7
k=6: [order 7] for n>8
k=7: [order 8] for n>9
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + 2*n + 1
n=3: a(n) = n^3 + (5/2)*n^2 + (3/2)*n
n=4: a(n) = n^4 + (17/6)*n^3 + 2*n^2 + (1/6)*n
n=5: a(n) = n^5 + (37/12)*n^4 + (5/2)*n^3 + (5/12)*n^2
n=6: a(n) = n^6 + (197/60)*n^5 + 3*n^4 + (3/4)*n^3 - (1/30)*n
n=7: a(n) = n^7 + (69/20)*n^6 + (7/2)*n^5 + (7/6)*n^4 - (7/60)*n^2
Comments