cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267232 T(n,k)=Number of length-n 0..k arrays with no following elements greater than or equal to the first repeated value.

Original entry on oeis.org

2, 3, 4, 4, 9, 5, 5, 16, 21, 6, 6, 25, 54, 47, 7, 7, 36, 110, 176, 103, 8, 8, 49, 195, 470, 564, 223, 9, 9, 64, 315, 1030, 1980, 1790, 479, 10, 10, 81, 476, 1981, 5375, 8274, 5646, 1023, 11, 11, 100, 684, 3472, 12327, 27854, 34396, 17732, 2175, 12, 12, 121, 945, 5676
Offset: 1

Views

Author

R. H. Hardin, Jan 12 2016

Keywords

Comments

Table starts
..2....3......4.......5........6.........7.........8..........9.........10
..4....9.....16......25.......36........49........64.........81........100
..5...21.....54.....110......195.......315.......476........684........945
..6...47....176.....470.....1030......1981......3472.......5676.......8790
..7..103....564....1980.....5375.....12327.....25088......46704......81135
..8..223...1790....8274....27854.....76237....180292.....382404.....745548
..9..479...5646...34396...143695....469623...1291052....3121008....6830757
.10.1023..17732..142474...738990...2884909...9222184...25415028...62455218
.11.2175..55512..588596..3791775..17686215..65755592..206617680..570177387
.12.4607.173354.2426738.19421854.108259885.468196540.1677626052.5199327816

Examples

			Some solutions for n=6 k=4
..3....3....1....0....4....0....3....2....4....2....4....4....4....1....0....1
..1....4....4....2....4....2....1....0....3....3....2....3....1....4....1....2
..0....2....4....0....2....0....0....3....4....2....1....0....0....3....3....0
..2....0....3....4....2....3....1....2....4....2....2....1....3....2....0....2
..4....2....1....0....1....1....4....3....1....1....0....4....0....1....3....0
..4....1....0....4....2....2....4....2....0....1....2....4....2....4....2....3
		

Crossrefs

Column 1 is A000027(n+2).
Row 1 is A000027(n+1).
Row 2 is A000290(n+1).
Row 3 is A160378(n+1).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) -a(n-2) for n>3
k=2: a(n) = 5*a(n-1) -8*a(n-2) +4*a(n-3) for n>4
k=3: a(n) = 9*a(n-1) -29*a(n-2) +39*a(n-3) -18*a(n-4) for n>5
k=4: a(n) = 14*a(n-1) -75*a(n-2) +190*a(n-3) -224*a(n-4) +96*a(n-5) for n>6
k=5: [order 6] for n>7
k=6: [order 7] for n>8
k=7: [order 8] for n>9
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + 2*n + 1
n=3: a(n) = n^3 + (5/2)*n^2 + (3/2)*n
n=4: a(n) = n^4 + (17/6)*n^3 + 2*n^2 + (1/6)*n
n=5: a(n) = n^5 + (37/12)*n^4 + (5/2)*n^3 + (5/12)*n^2
n=6: a(n) = n^6 + (197/60)*n^5 + 3*n^4 + (3/4)*n^3 - (1/30)*n
n=7: a(n) = n^7 + (69/20)*n^6 + (7/2)*n^5 + (7/6)*n^4 - (7/60)*n^2