cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267235 Number of length-6 0..n arrays with no following elements greater than or equal to the first repeated value.

Original entry on oeis.org

8, 223, 1790, 8274, 27854, 76237, 180292, 382404, 745548, 1359083, 2345266, 3866486, 6133218, 9412697, 14038312, 20419720, 29053680, 40535607, 55571846, 74992666, 99765974, 131011749, 170017196, 218252620, 277388020, 349310403
Offset: 1

Views

Author

R. H. Hardin, Jan 12 2016

Keywords

Examples

			Some solutions for n=6:
..5....6....6....6....2....6....5....0....3....2....1....1....2....3....3....0
..4....5....5....4....1....0....0....2....4....0....6....2....6....4....3....6
..6....1....6....6....2....3....4....5....5....6....3....1....1....3....2....5
..1....6....1....2....6....0....6....0....3....4....6....5....3....1....1....4
..1....0....5....3....4....1....1....1....1....2....3....6....6....2....2....4
..0....4....6....5....2....3....6....6....0....2....6....5....2....3....1....0
		

Crossrefs

Row 6 of A267232.

Formula

Empirical: a(n) = n^6 + (197/60)*n^5 + 3*n^4 + (3/4)*n^3 - (1/30)*n.
Conjectures from Colin Barker, Jan 10 2019: (Start)
G.f.: x*(8 + 167*x + 397*x^2 + 147*x^3 + x^4) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)