This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A267241 #14 Mar 03 2024 19:02:36 %S A267241 5,22,105,567,3351,20676,129129,804817,4982759,30629206,187121865, %T A267241 1137631979,6891047527,41628865000,250987078681,1511105743781, %U A267241 9088662549303,54625229882746,328144877989145,1970524978549951 %N A267241 Number of nX4 binary arrays with row sums nondecreasing and columns lexicographically nondecreasing. %C A267241 Column 4 of A267245. %H A267241 R. H. Hardin, <a href="/A267241/b267241.txt">Table of n, a(n) for n = 1..210</a> %H A267241 Robert Israel, <a href="/A267241/a267241.pdf">Maple-assisted proof of empirical recurrence</a> %H A267241 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (24, -246, 1420, -5121, 12084, -18944, 19536, -12720, 4736, -768). %F A267241 Empirical: a(n) = 24*a(n-1) -246*a(n-2) +1420*a(n-3) -5121*a(n-4) +12084*a(n-5) -18944*a(n-6) +19536*a(n-7) -12720*a(n-8) +4736*a(n-9) -768*a(n-10). %F A267241 Empirical formula verified (see link). - _Robert Israel_, Sep 08 2019 %e A267241 Some solutions for n=4 %e A267241 ..0..0..0..0....0..0..0..0....0..0..1..1....0..0..1..1....0..0..0..1 %e A267241 ..0..0..0..0....0..0..0..1....0..0..1..1....0..1..0..1....0..1..1..0 %e A267241 ..0..1..1..1....0..1..1..0....0..1..1..1....1..0..1..0....0..1..1..1 %e A267241 ..1..0..1..1....0..1..1..0....1..0..1..1....1..0..1..0....0..1..1..1 %p A267241 states:= select(proc(x) (x[1]=x[2] or x[5]=1) and (x[2]=x[3] or x[6]=1) and (x[3]=x[4] or x[7]=1) end proc, [seq(seq(seq(seq(seq(seq(seq([a,b,c,d,e,f,g],g=0..1),f=0..1),e=0..1),d=0..1),c=0..1),b=0..1),a=0..1)]): %p A267241 T:= Matrix(54,54,proc(i,j) local k; %p A267241 if add(states[j,k]-states[i,k],k=1..4) > 0 then return 0 fi; %p A267241 if states[j,5]>states[i,5] or states[j,6]>states[i,6] or states[j,7]>states[i,7] then return 0 fi; %p A267241 if states[i,1]>=states[i,2] and states[j,5]<> states[i,5] then return 0 fi; %p A267241 if states[i,2]>=states[i,3] and states[j,6]<> states[i,6] then return 0 fi; %p A267241 if states[i,3]>=states[i,4] and states[j,7]<> states[i,7] then return 0 fi; %p A267241 1 %p A267241 end proc): %p A267241 U:= Vector(54,1): %p A267241 E[0]:= Vector(54): E[0][1]:= 1: %p A267241 for k from 1 to 25 do E[k]:= T . E[k-1] od: %p A267241 seq(U^%T . E[j], j=1..25); # _Robert Israel_, Sep 08 2019 %t A267241 LinearRecurrence[{24, -246, 1420, -5121, 12084, -18944, 19536, -12720, 4736, -768}, {5, 22, 105, 567, 3351, 20676, 129129, 804817, 4982759, 30629206, 187121865}, 25] (* _Jean-François Alcover_, Oct 25 2022, after _Robert Israel_ *) %Y A267241 Cf. A267245. %K A267241 nonn %O A267241 1,1 %A A267241 _R. H. Hardin_, Jan 12 2016