cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267241 Number of nX4 binary arrays with row sums nondecreasing and columns lexicographically nondecreasing.

This page as a plain text file.
%I A267241 #14 Mar 03 2024 19:02:36
%S A267241 5,22,105,567,3351,20676,129129,804817,4982759,30629206,187121865,
%T A267241 1137631979,6891047527,41628865000,250987078681,1511105743781,
%U A267241 9088662549303,54625229882746,328144877989145,1970524978549951
%N A267241 Number of nX4 binary arrays with row sums nondecreasing and columns lexicographically nondecreasing.
%C A267241 Column 4 of A267245.
%H A267241 R. H. Hardin, <a href="/A267241/b267241.txt">Table of n, a(n) for n = 1..210</a>
%H A267241 Robert Israel, <a href="/A267241/a267241.pdf">Maple-assisted proof of empirical recurrence</a>
%H A267241 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (24, -246, 1420, -5121, 12084, -18944, 19536, -12720, 4736, -768).
%F A267241 Empirical: a(n) = 24*a(n-1) -246*a(n-2) +1420*a(n-3) -5121*a(n-4) +12084*a(n-5) -18944*a(n-6) +19536*a(n-7) -12720*a(n-8) +4736*a(n-9) -768*a(n-10).
%F A267241 Empirical formula verified (see link). - _Robert Israel_, Sep 08 2019
%e A267241 Some solutions for n=4
%e A267241 ..0..0..0..0....0..0..0..0....0..0..1..1....0..0..1..1....0..0..0..1
%e A267241 ..0..0..0..0....0..0..0..1....0..0..1..1....0..1..0..1....0..1..1..0
%e A267241 ..0..1..1..1....0..1..1..0....0..1..1..1....1..0..1..0....0..1..1..1
%e A267241 ..1..0..1..1....0..1..1..0....1..0..1..1....1..0..1..0....0..1..1..1
%p A267241 states:= select(proc(x) (x[1]=x[2] or x[5]=1) and (x[2]=x[3] or x[6]=1) and (x[3]=x[4] or x[7]=1) end proc, [seq(seq(seq(seq(seq(seq(seq([a,b,c,d,e,f,g],g=0..1),f=0..1),e=0..1),d=0..1),c=0..1),b=0..1),a=0..1)]):
%p A267241 T:= Matrix(54,54,proc(i,j) local k;
%p A267241   if add(states[j,k]-states[i,k],k=1..4) > 0 then return 0 fi;
%p A267241   if states[j,5]>states[i,5] or states[j,6]>states[i,6] or states[j,7]>states[i,7] then return 0 fi;
%p A267241   if states[i,1]>=states[i,2] and states[j,5]<> states[i,5] then return 0 fi;
%p A267241   if states[i,2]>=states[i,3] and states[j,6]<> states[i,6] then return 0 fi;
%p A267241   if states[i,3]>=states[i,4] and states[j,7]<> states[i,7] then return 0 fi;
%p A267241 1
%p A267241 end proc):
%p A267241 U:= Vector(54,1):
%p A267241 E[0]:= Vector(54): E[0][1]:= 1:
%p A267241 for k from 1 to 25 do E[k]:= T . E[k-1] od:
%p A267241 seq(U^%T . E[j], j=1..25); # _Robert Israel_, Sep 08 2019
%t A267241 LinearRecurrence[{24, -246, 1420, -5121, 12084, -18944, 19536, -12720, 4736, -768}, {5, 22, 105, 567, 3351, 20676, 129129, 804817, 4982759, 30629206, 187121865}, 25] (* _Jean-François Alcover_, Oct 25 2022, after _Robert Israel_ *)
%Y A267241 Cf. A267245.
%K A267241 nonn
%O A267241 1,1
%A A267241 _R. H. Hardin_, Jan 12 2016