cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267242 Number of nX5 binary arrays with row sums nondecreasing and columns lexicographically nondecreasing.

This page as a plain text file.
%I A267242 #10 Mar 17 2024 11:15:02
%S A267242 6,34,232,1986,20040,220235,2499080,28501471,323067002,3626695952,
%T A267242 40306404192,443852375808,4848323701804,52590398731297,
%U A267242 567018802063680,6081537709403509,64929807220896558,690446673537426382
%N A267242 Number of nX5 binary arrays with row sums nondecreasing and columns lexicographically nondecreasing.
%C A267242 Column 5 of A267245.
%H A267242 R. H. Hardin, <a href="/A267242/b267242.txt">Table of n, a(n) for n = 1..210</a>
%H A267242 Robert Israel, <a href="/A267242/a267242.pdf">Maple-assisted proof of empirical formula</a>
%H A267242 <a href="/index/Rec#order_14">Index entries for linear recurrences with constant coefficients</a>, signature (52, -1196, 16140, -142918, 879116, -3875668, 12442580, -29232481, 50015232, -61355336, 52355680, -29405200, 9744000, -1440000).
%F A267242 Empirical: a(n) = 52*a(n-1) -1196*a(n-2) +16140*a(n-3) -142918*a(n-4) +879116*a(n-5) -3875668*a(n-6) +12442580*a(n-7) -29232481*a(n-8) +50015232*a(n-9) -61355336*a(n-10) +52355680*a(n-11) -29405200*a(n-12) +9744000*a(n-13) -1440000*a(n-14).
%F A267242 Empirical formula verified (see link). - _Robert Israel_, Sep 08 2019
%e A267242 Some solutions for n=4
%e A267242 ..0..0..0..0..1....0..0..0..1..1....0..0..0..1..1....0..0..0..0..1
%e A267242 ..0..0..0..1..0....0..1..1..0..0....0..1..1..0..0....0..0..0..1..0
%e A267242 ..0..1..1..0..0....0..0..1..1..1....1..1..1..0..1....0..0..0..0..1
%e A267242 ..1..0..1..1..1....1..0..1..0..1....1..1..1..1..0....0..1..1..1..0
%p A267242 S[2]:= [[0,0,0],[0,0,1],[0,1,1],[1,0,1],[1,1,0],[1,1,1]]:
%p A267242 for i from 3 to 5 do
%p A267242   S[i]:= map(proc(t) [op(t[1..i-1]),t[i-1],op(t[i..-1]),0], [op(t[1..i-1]),t[i-1],op(t[i..-1]),1],
%p A267242      [op(t[1..i-1]),1-t[i-1],op(t[i..-1]),1] end proc, S[i-1])
%p A267242 od:
%p A267242 states:= S[5]:
%p A267242 T:= Matrix(162,162,proc(i,j) local k;
%p A267242   if add(states[j,k]-states[i,k],k=1..5) > 0 then return 0 fi;
%p A267242   for k from 6 to 9 do if states[j,k]>states[i,k] then return 0 fi od;
%p A267242   for k from 1 to 4 do if states[i,k]>=states[i,k+1] and states[j,k+5]<>states[i,k+5] then return 0 fi od;
%p A267242 1
%p A267242 end proc):
%p A267242 E:= Vector(162): E[1]:= 1:
%p A267242 U[0]:= Vector[row](162,1):
%p A267242 for k from 1 to 25 do U[k]:= U[k-1].T od:
%p A267242 seq(U[j] . E, j=1..25); # _Robert Israel_, Sep 08 2019
%Y A267242 Cf. A267245.
%K A267242 nonn
%O A267242 1,1
%A A267242 _R. H. Hardin_, Jan 12 2016