cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267251 Decimal expansion of Product_{i>=1} (1-1/prime(i))/(1-1/sqrt(prime(i)*prime(i+1))).

This page as a plain text file.
%I A267251 #24 Jan 22 2022 08:46:28
%S A267251 6,7,2,9,3,3,8,8,1,7,9,8,5,9,7,7,0
%N A267251 Decimal expansion of Product_{i>=1} (1-1/prime(i))/(1-1/sqrt(prime(i)*prime(i+1))).
%H A267251 Paul Erdős, <a href="http://www.jstor.org/stable/2306529">Solution to Advanced Problem 4413</a>, American Mathematical Monthly, 59 (1952) 259-261.
%e A267251 0.67293388179859770...
%e A267251 From _Jon E. Schoenfield_, Jan 28 2018: (Start)
%e A267251 Define the partial product y_j = Product_{i=1..PrimePi(j)-1} (1-1/prime(i))/(1-1/sqrt(prime(i)*prime(i+1))); then 2*y_(2^b) - y_(2^(b-1)) converges fairly quickly to lim_{j->infinity} y_j = 0.67293388179859770...:
%e A267251    b           y_(2^b)            2*y_(2^b) - y_(2^(b-1))
%e A267251   ==   ========================   ========================
%e A267251    1   1.0000000000000000000...   ------------------------
%e A267251    2   0.8449489742783178098...   0.6898979485566356196...
%e A267251    3   0.7310664129192713972...   0.6171838515602249847...
%e A267251    4   0.7016018086413063157...   0.6721372043633412342...
%e A267251    5   0.6843047236120372449...   0.6670076385827681741...
%e A267251    6   0.6785904879742426949...   0.6728762523364481450...
%e A267251    7   0.6756179719208981466...   0.6726454558675535982...
%e A267251    8   0.6742838913222028614...   0.6729498107235075762...
%e A267251    9   0.6735974784100733488...   0.6729110654979438362...
%e A267251   10   0.6732641297588515055...   0.6729307811076296623...
%e A267251   11   0.6730990828541563251...   0.6729340359494611447...
%e A267251   12   0.6730161366254012027...   0.6729331903966460803...
%e A267251   13   0.6729749724000593392...   0.6729338081747174757...
%e A267251   14   0.6729544253323538140...   0.6729338782646482887...
%e A267251   15   0.6729441568308331961...   0.6729338883293125783...
%e A267251   16   0.6729390172929284098...   0.6729338777550236236...
%e A267251   17   0.6729364489209538789...   0.6729338805489793480...
%e A267251   18   0.6729351653593885893...   0.6729338817978232998...
%e A267251   19   0.6729345235639937111...   0.6729338817685988329...
%e A267251   20   0.6729342026805519869...   0.6729338817971102627...
%e A267251   21   0.6729340422395265924...   0.6729338817985011978...
%e A267251   22   0.6729339620187032430...   0.6729338817978798937...
%e A267251   23   0.6729339219086747633...   0.6729338817986462835...
%e A267251   24   0.6729339018535990721...   0.6729338817985233809...
%e A267251   25   0.6729338918261069776...   0.6729338817986148831...
%e A267251   26   0.6729338868123465563...   0.6729338817985861350...
%e A267251   27   0.6729338843054725858...   0.6729338817985986153...
%e A267251   28   0.6729338830520350245...   0.6729338817985974632...
%e A267251   29   0.6729338824253162288...   0.6729338817985974332...
%e A267251   30   0.6729338821119569733...   0.6729338817985977178...
%e A267251   31   0.6729338819552773332...   0.6729338817985976930...
%e A267251   32   0.6729338818769375185...   0.6729338817985977038...
%e A267251   33   0.6729338818377676111...   0.6729338817985977038...
%e A267251   34   0.6729338818181826575...   0.6729338817985977039...
%e A267251 (End)
%t A267251 Take[First@ RealDigits@ N[Product[(1 - 1/Prime@ i)/(1 - 1/Sqrt[Prime[i] Prime[i + 1]]), {i, 100000}]], 5] (* _Michael De Vlieger_, Jan 12 2016 *)
%Y A267251 Cf. A245630, A245636.
%K A267251 nonn,cons,more
%O A267251 0,1
%A A267251 _Michel Marcus_, Jan 12 2016
%E A267251 Three more digits from _Jean-François Alcover_, Jan 13 2016
%E A267251 Nine more digits from _Jon E. Schoenfield_, Jan 28 2018