cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267252 Primes of the form abs(103*n^2 - 4707*n + 50383) in order of increasing nonnegative n.

This page as a plain text file.
%I A267252 #37 Feb 16 2025 08:33:29
%S A267252 50383,45779,41381,37189,33203,29423,25849,22481,19319,16363,13613,
%T A267252 11069,8731,6599,4673,2953,1439,131,971,1867,2557,3041,3319,3391,3257,
%U A267252 2917,2371,1619,661,503,1873,3449,5231,7219,9413,11813,14419,17231,20249,23473,26903
%N A267252 Primes of the form abs(103*n^2 - 4707*n + 50383) in order of increasing nonnegative n.
%C A267252 This polynomial is a transformed version of the polynomial P(x) = 103*x^2 + 31*x - 3391 whose absolute value gives 43 distinct primes for -23 <= x <= 19, found by G. W. Fung in 1988. - _Hugo Pfoertner_, Dec 13 2019
%D A267252 Paulo Ribenboim, The Little Book of Bigger Primes, Second Edition, Springer-Verlag New York, 2004.
%H A267252 Robert Price, <a href="/A267252/b267252.txt">Table of n, a(n) for n = 1..3885</a>
%H A267252 François Dress and Michel Olivier, <a href="https://projecteuclid.org/euclid.em/1047262355">Polynômes prenant des valeurs premières</a>, Experimental Mathematics, Volume 8, Issue 4 (1999), 319-338.
%H A267252 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Prime-GeneratingPolynomial.html">Prime-Generating Polynomials</a>
%e A267252 33203 is in this sequence since 103*4^2 - 4707*4 + 50383  = 1648-18828+50383 = 33203 is prime.
%t A267252 n = Range[0, 100]; Abs @ Select[103n^2 - 4707n + 50383 , PrimeQ[#] &]
%o A267252 (PARI) lista(nn) = for(n=0, nn, if(isprime(p=abs(103*n^2-4707*n+50383)), print1(p, ", "))); \\ _Altug Alkan_, Apr 28 2016, corrected by _Hugo Pfoertner_, Dec 13 2019
%Y A267252 Cf. A050268, A050267, A005846, A007641, A007635, A048988, A050265, A050266.
%Y A267252 Cf. A271980, A272030, A272074, A272075, A272118, A272159, A271143, A272284, A272323, A267069, A330363.
%K A267252 nonn,less
%O A267252 1,1
%A A267252 _Robert Price_, Apr 28 2016
%E A267252 Title corrected by _Hugo Pfoertner_, Dec 13 2019