cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267290 Primes of the form 11*k^2-11*k+7.

This page as a plain text file.
%I A267290 #22 Sep 08 2022 08:46:15
%S A267290 7,29,73,139,227,337,997,1217,1459,1723,2647,2999,3373,3769,5573,6079,
%T A267290 6607,15473,17167,18047,21787,22777,23789,28057,29179,30323,31489,
%U A267290 36373,37649,41609,45767,48649,50123,56239,61057,67789,71287,74873,84223,88117,108907,113329,117839,124769,127123,129499
%N A267290 Primes of the form 11*k^2-11*k+7.
%C A267290 Primes p == 7 (mod 11) such that (4*p-17)/11 is a square. - _Robert Israel_, Jan 14 2016
%H A267290 Robert Israel, <a href="/A267290/b267290.txt">Table of n, a(n) for n = 1..10000</a>
%e A267290 k = 3: 11*(3^2) - 11*3 + 7 = 73 (is prime).
%p A267290 select(isprime, [seq(11*i^2-11*i+7, i=1..1000)]); # _Robert Israel_, Jan 14 2016
%t A267290 Select[Array[11 #^2 - 11 # + 7 &, {112}], PrimeQ] (* _Michael De Vlieger_, Jan 12 2016 *)
%t A267290 Select[Table[11 n^2 - 11 n + 7, {n, 180}], PrimeQ] (* _Vincenzo Librandi_, Jan 15 2016 *)
%o A267290 (PARI) lista(nn) = for (k=1, nn, if (isprime(p=11*k^2-11*k+7), print1(p, ", "))); \\ _Michel Marcus_, Jan 14 2016
%o A267290 (Magma) [a: n in [1..100] | IsPrime(a) where a is 11*n^2-11*n+7]; // _Vincenzo Librandi_, Jan 15 2016
%Y A267290 Cf. A141854.
%K A267290 nonn,easy
%O A267290 1,1
%A A267290 _Emre APARI_, Jan 12 2016
%E A267290 More terms from _Michael De Vlieger_, Jan 12 2016