A267321 Perfect powers that are not of the form x^2 + y^2 + z^2 where x, y and z are integers.
343, 3375, 12167, 16807, 21952, 29791, 59319, 103823, 166375, 216000, 250047, 357911, 493039, 658503, 759375, 778688, 823543, 857375, 1092727, 1367631, 1404928, 1685159, 1906624, 2048383, 2460375, 2924207, 3442951, 3796416, 4019679, 4657463, 5359375, 6128487
Offset: 1
Keywords
Examples
16807 is a term because 16807 = 7^5 and there is no integer values of x, y and z for the equation 7^5 = x^2 + y^2 + z^2.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 10^10; # to get all terms <= N sort(convert({seq(seq(seq((4^i*(8*j+7))^(2*k+3), k=0..floor(1/2*(log[4^i*(8*j+7)](N)-3))), j = 0 .. floor((N^(1/3)*4^(-i)-7)/8)), i=0..floor(log[4](N^(1/3)/7)))},list)); # Robert Israel, Jan 14 2016
-
PARI
isA004215(n) = { my(fouri, j) ; fouri=1 ; while( n >=7*fouri, if( n % fouri ==0, j= n/fouri -7 ; if( j % 8 ==0, return(1) ) ; ) ; fouri *= 4 ; ) ; return(0) ; } { for(n=1, 400, if(isA004215(n), print1(n, ", ") ; ) ; ) ; } for(n=0, 1e7, if(isA004215(n) && ispower(n), print1(n, ", ")));
Comments