This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A267322 #33 Feb 16 2025 08:33:29 %S A267322 1,1,1,3,4,5,6,9,12,10,16,22,15,25,35,21,36,51,28,49,70,36,64,92,45, %T A267322 81,117,55,100,145,66,121,176,78,144,210,91,169,247,105,196,287,120, %U A267322 225,330,136,256,376,153,289,425,171,324,477,190,361,532,210,400,590,231,441,651 %N A267322 Expansion of (1 + x + x^2 + x^4 + 2*x^5)/(1 - x^3)^3. %C A267322 Triangular numbers alternating with squares and pentagonal numbers. %H A267322 Ilya Gutkovskiy, <a href="/A267322/a267322.pdf">Extended illustration of initial terms</a> %H A267322 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TriangularNumber.html">Triangular Number</a> %H A267322 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SquareNumber.html">Square Number</a> %H A267322 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PentagonalNumber.html">Pentagonal Number</a> %H A267322 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,3,0,0,-3,0,0,1) %F A267322 G.f.: (1 + x + x^2 + x^4 + 2*x^5)/(1 - x^3)^3. %F A267322 a(n) = 3*a(n-3) - 3*a(n-6) + a(n-9). %F A267322 a(3k) = A000217(k+1), a(3k+1) = A000290(k+1), a(3k+2) = A000326(k+1). %F A267322 Sum_{n>=0} 1/a(n) = 2 - Pi/sqrt(3) + Pi^2/6 + 3*log(3) = 5.1269715686... %F A267322 a(n) = (floor(n/3) + 1)*((n+1)*floor(n/3) - 3*floor(n/3)^2 + 2)/2. - _Bruno Berselli_, Apr 08 2016 %e A267322 Illustration of initial terms: %e A267322 ========================================================== %e A267322 n: 0 1 2 3 4 5 6 7 8 %e A267322 ---------------------------------------------------------- %e A267322 o %e A267322 o o %e A267322 o o o o o o o o %e A267322 o o o o o o o o o o o o o %e A267322 o o o o o o o o o o o o o o o o o o %e A267322 ========================================================== %e A267322 1 1 1 3 4 5 6 9 12 %e A267322 ---------------------------------------------------------- %t A267322 LinearRecurrence[{0, 0, 3, 0, 0, -3, 0, 0, 1}, {1, 1, 1, 3, 4, 5, 6, 9, 12}, 70] %t A267322 Table[(Floor[n/3] + 1) ((n + 1) Floor[n/3] - 3 Floor[n/3]^2 + 2)/2, {n, 0, 70}] (* _Bruno Berselli_, Apr 08 2016 *) %t A267322 CoefficientList[Series[(1+x+x^2+x^4+2x^5)/(1-x^3)^3,{x,0,70}],x] (* _Harvey P. Dale_, Dec 31 2023 *) %o A267322 (PARI) x='x+O('x^99); Vec((1+x+x^2+x^4+2*x^5)/(1-x^3)^3) \\ _Altug Alkan_, Apr 07 2016 %Y A267322 Cf. A000217, A000290, A000326, A123596, A124093, A271391. %K A267322 nonn,easy %O A267322 0,4 %A A267322 _Ilya Gutkovskiy_, Apr 07 2016