A267324 Number of elements of S_n with strategic pile of size 4.
0, 0, 0, 0, 0, 32, 288, 2448, 22080, 216000, 2298240, 26530560, 330946560, 4441651200, 63866880000, 980037273600, 15990989414400, 276529539686400, 5052853757952000, 97290972979200000, 1969085601939456000, 41794695550992384000, 928395406320205824000
Offset: 1
Keywords
Examples
P = [6,4,2,5,3,1] has strategic pile of size 4: The composition of cycles (0,1,3,5,2,4,6)(0,1,2,3,4,5,6) is (0,3,6,1,4,2,5) = (6,1,4,2,5,0,3) and thus the strategic pile of P is {1,2,4,5}.
Links
- K. L. M. Adamyk, E. Holmes, G. R. Mayfield, D. J. Moritz, M. Scheepers, B. E. Tenner, H. C. Wauck, Sorting Permutations: Games, Genomes, and Cycles, arXiv:1410.2353 [math.CO], 2014-2017.
- Marisa Gaetz, Bethany Flanagan, Marion Scheepers, Meghan Shanks, Quantifying CDS Sortability of Permutations by Strategic Pile Size, arXiv:1811.11937 [math.CO], 2018.
- M. Gaetz, B. Molokach, M. Scheepers, and M. Shanks, Quantifying CDS Sortability of Permutations Using Strategic Piles
Crossrefs
Programs
-
Mathematica
a[n_] := If[n<6, 0, 2(n-5)(n^2-5n+10) Pochhammer[3, n-6]]; Array[a, 23] (* Jean-François Alcover, Dec 12 2018 *)
Formula
a(n) = (n-4)!*(6*binomial(n-5,3) + 16*binomial(n-5,2) + 16*binomial(n-5,1)) for n>5. - Marisa Gaetz, Jan 18 2017
Extensions
Typo for a(8) corrected by Marion Scheepers, Jun 26 2016
Comments