A267367 Decimal representation of the middle column of the "Rule 126" elementary cellular automaton starting with a single ON (black) cell.
1, 3, 6, 13, 26, 52, 104, 209, 418, 836, 1672, 3344, 6688, 13376, 26752, 53505, 107010, 214020, 428040, 856080, 1712160, 3424320, 6848640, 13697280, 27394560, 54789120, 109578240, 219156480, 438312960, 876625920, 1753251840, 3506503681, 7013007362
Offset: 0
References
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
Links
- Robert Price, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- Eric Weisstein's World of Mathematics, Rule 126
- S. Wolfram, A New Kind of Science
- Index entries for sequences related to cellular automata
- Index to Elementary Cellular Automata
Programs
-
Maple
A267367 := proc(n) local i, s, z; s := 0; i := n; z := 1; while 0 <= i do s := s+2^i; i := i-z; z := z+z od; s end: seq(A267367(n), n=0..32); # Peter Luschny, Dec 02 2017
-
Mathematica
rule=126; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) mc=Table[catri[[k]][[k]],{k,1,rows}]; (* Keep only middle cell from each row *) Table[FromDigits[Take[mc,k],2],{k,1,rows}] (* Binary Representation of Middle Column *)
-
Python
def A267367(n): i, s, z = n, 0, 1 while 0 <= i: s += 1<A267367(n) for n in range(33)]) # Peter Luschny, Dec 02 2017