This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A267388 #7 Feb 18 2017 08:37:38 %S A267388 1,1,2,6,24,120,720,5040,40320,322560,2943360,30078720,339696000, %T A267388 4196666880,56255149440,812752093440,12585067447680,194465276369280, %U A267388 3220308737573760,56845456896816000,1064856592650695040,21087473349235547520,440007278378842984320 %N A267388 Number of acyclic orientations of the Turán graph T(n,8). %C A267388 An acyclic orientation is an assignment of a direction to each edge such that no cycle in the graph is consistently oriented. Stanley showed that the number of acyclic orientations of a graph G is equal to the absolute value of the chromatic polynomial X_G(q) evaluated at q=-1. %H A267388 Alois P. Heinz, <a href="/A267388/b267388.txt">Table of n, a(n) for n = 0..450</a> %H A267388 Richard P. Stanley, <a href="http://dx.doi.org/10.1016/0012-365X(73)90108-8">Acyclic Orientations of Graphs</a>, Discrete Mathematics, 5 (1973), pages 171-178, doi:10.1016/0012-365X(73)90108-8 %H A267388 Wikipedia, <a href="https://en.wikipedia.org/wiki/Tur%C3%A1n_graph">Turán graph</a> %F A267388 a(n) ~ n! / (7 * (1 - log(8/7))^(7/2) * 8^n * (log(8/7))^(n+1)). - _Vaclav Kotesovec_, Feb 18 2017 %Y A267388 Column k=8 of A267383. %K A267388 nonn %O A267388 0,3 %A A267388 _Alois P. Heinz_, Jan 13 2016