This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A267413 #42 Aug 07 2023 05:40:31 %S A267413 6,7,11,15,35,39,63,135,255,999,2175,8223,16383,57735,131075,131079, %T A267413 262143,524295,1048575,536870919,1073735679,2147483655,4294967295, %U A267413 17179770879,4260641103903,4611686018427387903,4720069647059686260735,1237940039285380274899124223 %N A267413 Dropping any binary digit gives a prime number. %C A267413 This is the binary analog of A034895. The sequence contains mostly numbers with very few binary digit runs (BDR, A005811). Those with one BDR are of the type 2^k-1, such that 2^(k-1)-1 is a Mersenne prime (A000668). Vice versa, if M is any Mersenne prime, then 2*M+1 is a term. The number 6 is the only term with an even number of BDRs. There are many terms with 3 BDRs. The first term with 5 BDRs is 57735. The next terms with at least 5 BDRs (if they exist at all) are larger than 10^10. So far, I could test that a(24) > 10^10. %C A267413 From _Robert Israel_, Jan 14 2016: (Start) %C A267413 For n >= 2, a(n) == 3 (mod 4). %C A267413 2^k+3 is in the sequence if 2^(k-1)+1 and 2^(k-1)+3 are primes, i.e., 2^(k-1)+1 is in the intersection of A019434 and A001359. The only known terms of the sequence in this class are 7, 11, 35, 131075. %C A267413 2^k+7 is in the sequence if 2^(k-1)+3 and 2^(k-1)+7 are primes: thus 2^(k-1)+3 is in A057733 and 2^(k-1)+7 is in A104066. Terms of the sequence in this class include 15, 39, 135, 131079, 524295, 536870919, 2147483655 (but no more for k <= 2000). %C A267413 (End) %C A267413 a(25) > 2^38. - _Giovanni Resta_, Apr 10 2016 %C A267413 For n > 1, a(n) = 2p+1 for some prime p. - _Chai Wah Wu_, Aug 27 2021 %C A267413 From _Bert Dobbelaere_, Aug 07 2023: (Start) %C A267413 There are no more terms with an odd number of binary digits: from any number having an odd number of binary digits, one can always drop a digit and obtain a multiple of 3. Numbers of the form 2^k+3 (k even and k > 2) cannot be terms because 2^(k-1)+1 is a multiple of 3. %C A267413 (End) %e A267413 Decimal and binary forms of the known terms: %e A267413 1 6 110 %e A267413 2 7 111 %e A267413 3 11 1011 %e A267413 4 15 1111 %e A267413 5 35 100011 %e A267413 6 39 100111 %e A267413 7 63 111111 %e A267413 8 135 10000111 %e A267413 9 255 11111111 %e A267413 10 999 1111100111 %e A267413 11 2175 100001111111 %e A267413 12 8223 10000000011111 %e A267413 13 16383 11111111111111 %e A267413 14 57735 1110000110000111 <--- (a binary palindrome %e A267413 15 131075 100000000000000011 with 5 digit runs) %e A267413 16 131079 100000000000000111 %e A267413 17 262143 111111111111111111 %e A267413 18 524295 10000000000000000111 %e A267413 19 1048575 11111111111111111111 %e A267413 20 536870919 100000000000000000000000000111 %e A267413 21 1073735679 111111111111111110011111111111 %e A267413 22 2147483655 10000000000000000000000000000111 %e A267413 23 4294967295 11111111111111111111111111111111 %e A267413 24 17179770879 1111111111111111100111111111111111 %p A267413 filter:= proc(n) local B,k,y; %p A267413 if not isprime(floor(n/2)) then return false fi; %p A267413 B:= convert(n,base,2); %p A267413 for k from 2 to nops(B) do %p A267413 if B[k] <> B[k-1] then %p A267413 y:= n mod 2^(k-1); %p A267413 if not isprime((y+n-B[k]*2^(k-1))/2) then return false fi %p A267413 fi %p A267413 od; %p A267413 true %p A267413 end proc: %p A267413 select(filter, [6, seq(i,i=7..10^6,4)]); # _Robert Israel_, Jan 14 2016 %t A267413 Select[Range[2^20], AllTrue[Function[w, Map[FromDigits[#, 2] &@ Drop[w, {#}] &, Range@ Length@ w]]@ IntegerDigits[#, 2], PrimeQ] &] (* _Michael De Vlieger_, Jan 16 2016, Version 10 *) %o A267413 (PARI) DroppingAnyDigitGivesAPrime(N,b) = { %o A267413 \\ Property-testing function; returns 1 if true for N, 0 otherwise %o A267413 \\ Works with any base b. Here used with b=2. %o A267413 my(k=b,m); if(N<b,return(0)); %o A267413 while(N>=(k\b), m=(N\k)*(k\b)+(N%(k\b)); %o A267413 if ((m<2)||(!isprime(m)),return(0)); k*=b); %o A267413 return(1); %o A267413 } %o A267413 (Python) %o A267413 from sympy import isprime %o A267413 def ok(n): %o A267413 if n < 7 or n%4 != 3: return n == 6 %o A267413 b = bin(n)[2:] %o A267413 return all(isprime(int(b[:i]+b[i+1:], 2)) for i in range(len(b))) %o A267413 print(list(filter(ok, range(2, 2**20)))) # _Michael S. Branicky_, Jun 07 2021 %Y A267413 Cf. A000668, A001359, A005811, A019434, A034895 (base 10), A051362, A057733, A104066. %K A267413 nonn,base,more,hard %O A267413 1,1 %A A267413 _Stanislav Sykora_, Jan 14 2016 %E A267413 a(24) from _Giovanni Resta_, Apr 10 2016 %E A267413 a(25)-a(28) from _Bert Dobbelaere_, Aug 07 2023