A267419 Number of ways of making change for n cents using coins whose values are the previous terms in the sequence, starting with 1,2 cents.
1, 2, 2, 3, 5, 8, 10, 14, 17, 23, 28, 35, 43, 53, 64, 78, 93, 112, 132, 158, 184, 217, 253, 295, 342, 396, 455, 526, 600, 689, 784, 893, 1014, 1150, 1299, 1468, 1651, 1860, 2084, 2339, 2613, 2921, 3257, 3628, 4034, 4482, 4967, 5508, 6087, 6731, 7426, 8188, 9017, 9920, 10898, 11969, 13120, 14382, 15737, 17215
Offset: 1
Keywords
Examples
For n=4, the coins available are 1,2. There are a(4)=3 ways to make 4 cents with these coins: 4 = 1+1+1+1 4 = 2+1+1 4 = 2+2 Since there are 3 ways, now the available coins are 1,2,3. For n=5, we have: 5 = 1+1+1+1+1 5 = 2+1+1+1 5 = 2+2+1 5 = 3+1+1 5 = 3+2 for 5 ways to make change, so now 1,2,3,5 are available, etc.
Programs
-
Mathematica
a = {1, 2}; Do[AppendTo[a, Count[IntegerPartitions@ n, w_ /; AllTrue[w, MemberQ[a, #] &]]], {n, 3, 60}]; a (* Michael De Vlieger, Jan 15 2016, Version 10 *)