A267422 Largest prime factor of the largest squarefree practical number comprising n prime factors.
2, 3, 13, 167, 28219, 796481281, 634382430983400959, 402441068740409482305343048128921493, 161958813808922990180784918278423278413890512706478208244331277280870341
Offset: 1
Keywords
Examples
a(3) = 13 because there are only 4 squarefree practical numbers with 3 prime factors, namely 2*3*5 = 30, 2*3*7 = 42, 2*3*11 = 66 and 2*3*13 = 78. So 78 is the largest squarefree practical number with 3 prime factors and the largest prime factor is 13.
Links
- Frank M Jackson, Table of n, a(n) for n = 1..15
- Wikipedia, Practical number and Squarefree integer
Programs
-
Mathematica
lst={2}; Do[If[PrimeQ[f=DivisorSigma[1, Apply[Times, lst]]+1], AppendTo[lst, f], AppendTo[lst, NextPrime[f, -1]]], {8}]; lst lst={2}; Do[AppendTo[lst, NextPrime[Times@@(#+1)&[lst]+2, -1]], {12}]; lst (* Frank M Jackson, May 29 2023 *)
Comments