This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A267435 #17 Oct 17 2023 05:49:45 %S A267435 8,20,32,320,2048,2216,8192,13312,87040,218432,524288,89478400, %T A267435 536870912,137438953472,250199979283796,9007199254740992, %U A267435 63800994005254144,96076791692656640,382805968326492160,576460752303423488,2305843009213693952,4099276399740365440 %N A267435 Numbers n such that each reduced Collatz trajectory (mod p): (n, T(n), T(T(n)),..., 4, 2, 1) / pZ, where the odd prime p is the number of iterations needed to reach 1, contains exactly the p-1 values {1, 2, 3, .., p-1}. %C A267435 Or numbers n such that the multiplicative groups {n, T(n), T(T(n)),..., 4, 2, 1} / pZ are of order p-1. %C A267435 Property of the sequence: %C A267435 This sequence provides a link with Artin’s conjecture on primitive roots. %C A267435 Conjecture: the sequence is infinite (corollary of a Artin’s conjecture because the sequence contains the numbers 2^A001122(k) where A001122 are the primes with primitive root 2). %C A267435 The sequence is divided into two class of numbers: %C A267435 i) A class of powers of 2: 2^3, 2^5, 2^11, 2^13, 2^19, 2^29, 2^37, 2^53, ..., 2^A001122(k),… %C A267435 ii) A class of non-powers of 2: 20, 320, 2216, 13312, 87040, 218432, 89478400... %C A267435 The corresponding p of the sequence are 3, 7, 5, 11, 11, 19, 13, 19, 19, 23, 19, 29,... %H A267435 Hiroaki Yamanouchi, <a href="/A267435/b267435.txt">Table of n, a(n) for n = 1..37</a> %H A267435 Wikipedia, <a href="https://en.wikipedia.org/wiki/Artin%27s_conjecture_on_primitive_roots">Artin's conjecture on primitive roots</a>. %e A267435 20 is in the sequence because the Collatz trajectory of 20 is {20 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1} with 7 iterations, and the corresponding reduced trajectory (mod 7) is {6, 3, 5, 2, 1, 4, 2, 1} => the multiplicative group of order 6 is G = {1, 2, 3, 4, 5, 6}. %p A267435 nn:=10000:T:=array(1..2000):U:=array(1..2000): %p A267435 for n from 1 to 10000000 do: %p A267435 kk:=1:m:=n:T[kk]:=n:it:=0: %p A267435 for i from 1 to nn while(m<>1) do: %p A267435 if irem(m,2)=0 %p A267435 then %p A267435 m:=m/2:kk:=kk+1:T[kk]:=m:it:=it+1: %p A267435 else %p A267435 m:=3*m+1:kk:=kk+1:T[kk]:=m:it:=it+1: %p A267435 fi: %p A267435 od: %p A267435 if isprime(it) %p A267435 then %p A267435 lst:={}: %p A267435 for p from 1 to it do: %p A267435 lst:=lst union {irem(T[p],it)}: %p A267435 od: %p A267435 n0:=nops(lst): %p A267435 if n0=it-1 and lst[1]=1 %p A267435 then %p A267435 print(n): %p A267435 else %p A267435 fi: %p A267435 fi: %p A267435 od: %Y A267435 Cf. A001122, A006667, A214850. %K A267435 nonn %O A267435 1,1 %A A267435 _Michel Lagneau_, Jan 15 2016 %E A267435 a(14)-a(22) from _Hiroaki Yamanouchi_, Jan 19 2016