A267462 Carmichael numbers that are not of the form x^2 + y^2 + z^2 where x, y and z are integers.
8911, 1152271, 10267951, 14913991, 64377991, 67902031, 139952671, 178482151, 612816751, 652969351, 743404663, 2000436751, 2560600351, 3102234751, 3215031751, 5615659951, 5883081751, 7773873751, 8863329511, 9462932431, 10501586767, 11335174831, 12191597551, 13946829751, 16157879263, 21046047751
Offset: 1
Keywords
Examples
Carmichael number 561 is not a term of this sequence because 561 = 2^2 + 14^2 + 19^2. Carmichael number 8911 is a term because there is no integer values of x, y and z for the equation 8911 = x^2 + y^2 + z^2. Carmichael number 10585 is not a term because 10585 = 0^2 + 37^2 + 96^2.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (calculated using data from Claude Goutier)
- Claude Goutier, Compressed text file carm10e22.gz containing all the Carmichael numbers up to 10^22.
- G. Tarry, I. Franel, A. Korselt, and G. Vacca. Problème chinois. L'intermédiaire des mathématiciens 6 (1899), pp. 142-144.
- Eric Weisstein's World of Mathematics, Carmichael Number
- Index entries for sequences related to Carmichael numbers.
Programs
-
Maple
filter:= proc(n) local q; if isprime(n) then return false fi; if 2 &^ (n-1) mod n <> 1 then return false fi; for q in ifactors(n)[2] do if q[2] > 1 or (n-1) mod (q[1]-1) <> 0 then return false fi od; true end proc: select(filter, [seq(8*k+7, k=0..10^7)]); # Robert Israel, Jan 18 2016
-
Mathematica
Select[8*Range[1,8000000]+7, CompositeQ[#] && Divisible[#-1, CarmichaelLambda[#]] &] (* Amiram Eldar, Jun 26 2019 *)
-
PARI
isA004215(n) = { my(fouri, j) ; fouri=1 ; while( n >=7*fouri, if( n % fouri ==0, j= n/fouri -7 ; if( j % 8 ==0, return(1) ) ; ) ; fouri *= 4 ; ) ; return(0) ; } { for(n=1, 400, if(isA004215(n), print1(n, ", ") ; ) ; ) ; } isA002997(n) = { my(f); bittest(n, 0) && !for(i=1, #f=factor(n)~, (f[2, i]==1 && n%(f[1, i]-1)==1)||return) && #f>1 } for(n=0, 1e10, if(isA002997(n) && isA004215(n), print1(n, ", ")));
-
PARI
isA002997(n) = { my(f); bittest(n, 0) && !for(i=1, #f=factor(n)~, (f[2, i]==1 && n%(f[1, i]-1)==1)||return) && #f>1 } for(n=0, 1e10, if(isA002997(k=8*n+7), print1(k, ", ")));
Comments