cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267462 Carmichael numbers that are not of the form x^2 + y^2 + z^2 where x, y and z are integers.

Original entry on oeis.org

8911, 1152271, 10267951, 14913991, 64377991, 67902031, 139952671, 178482151, 612816751, 652969351, 743404663, 2000436751, 2560600351, 3102234751, 3215031751, 5615659951, 5883081751, 7773873751, 8863329511, 9462932431, 10501586767, 11335174831, 12191597551, 13946829751, 16157879263, 21046047751
Offset: 1

Views

Author

Altug Alkan, Jan 15 2016

Keywords

Comments

Intersection of A002997 and A004215.
Carmichael numbers that are the sum of 4 but no fewer nonzero squares.
Carmichael numbers of the form 8*k + 7.
Subsequence of A185321.
Carmichael numbers of the form x^2 + y^2 + z^2 where x, y and z are integers are 561, 1105, 1729, 2465, 2821, 6601, 10585, 15841, 29341, 41041, 46657, 52633, 62745, 63973, 75361, 101101, 115921, 126217, 162401, 172081, 188461, 252601, 278545, 294409, 314821, 334153, 340561, 399001, 410041, 449065, 488881, 512461, 530881, 552721, ...

Examples

			Carmichael number 561 is not a term of this sequence because 561 = 2^2 + 14^2 + 19^2.
Carmichael number 8911 is a term because there is no integer values of x, y and z for the equation 8911 = x^2 + y^2 + z^2.
Carmichael number 10585 is not a term because 10585 = 0^2 + 37^2 + 96^2.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n)
      local q;
      if isprime(n) then return false fi;
      if 2 &^ (n-1) mod n <> 1 then return false fi;
      for q in ifactors(n)[2] do
        if q[2] > 1 or (n-1) mod (q[1]-1) <> 0 then return false fi
        od;
        true
    end proc:
    select(filter, [seq(8*k+7, k=0..10^7)]); # Robert Israel, Jan 18 2016
  • Mathematica
    Select[8*Range[1,8000000]+7, CompositeQ[#] && Divisible[#-1, CarmichaelLambda[#]] &] (* Amiram Eldar, Jun 26 2019 *)
  • PARI
    isA004215(n) = { my(fouri, j) ; fouri=1 ; while( n >=7*fouri, if( n % fouri ==0, j= n/fouri -7 ; if( j % 8 ==0, return(1) ) ; ) ; fouri *= 4 ; ) ; return(0) ; } { for(n=1, 400, if(isA004215(n), print1(n, ", ") ; ) ; ) ; }
    isA002997(n) = { my(f); bittest(n, 0) && !for(i=1, #f=factor(n)~, (f[2, i]==1 && n%(f[1, i]-1)==1)||return) && #f>1 }
    for(n=0, 1e10, if(isA002997(n) && isA004215(n), print1(n, ", ")));
    
  • PARI
    isA002997(n) = { my(f); bittest(n, 0) && !for(i=1, #f=factor(n)~, (f[2, i]==1 && n%(f[1, i]-1)==1)||return) && #f>1 }
    for(n=0, 1e10, if(isA002997(k=8*n+7), print1(k, ", ")));