A267471 T(n,k)=Number of length-n 0..k arrays with no following elements larger than the first repeated value.
2, 3, 4, 4, 9, 7, 5, 16, 24, 12, 6, 25, 58, 62, 21, 7, 36, 115, 204, 160, 38, 8, 49, 201, 515, 712, 418, 71, 9, 64, 322, 1096, 2285, 2490, 1112, 136, 10, 81, 484, 2072, 5921, 10119, 8770, 3018, 265, 11, 100, 693, 3592, 13216, 31880, 44901, 31200, 8352, 522, 12, 121
Offset: 1
Examples
Some solutions for n=6 k=4 ..0....1....1....4....0....1....0....4....1....2....3....4....4....1....0....3 ..4....0....4....0....4....0....3....0....2....3....1....4....3....4....1....0 ..4....2....2....4....3....4....2....4....0....0....2....4....2....0....3....2 ..0....3....4....0....3....4....3....3....1....1....4....2....4....4....4....3 ..2....4....1....1....0....0....1....1....2....1....3....1....3....2....1....3 ..4....4....1....1....3....2....0....2....0....0....0....1....4....3....1....1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..9999
Formula
Empirical for column k:
k=1: a(n) = 4*a(n-1) -5*a(n-2) +2*a(n-3)
k=2: a(n) = 8*a(n-1) -23*a(n-2) +28*a(n-3) -12*a(n-4)
k=3: a(n) = 13*a(n-1) -65*a(n-2) +155*a(n-3) -174*a(n-4) +72*a(n-5)
k=4: a(n) = 19*a(n-1) -145*a(n-2) +565*a(n-3) -1174*a(n-4) +1216*a(n-5) -480*a(n-6)
k=5: [order 7]
k=6: [order 8]
k=7: [order 9]
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + 2*n + 1
n=3: a(n) = n^3 + (5/2)*n^2 + (5/2)*n + 1
n=4: a(n) = n^4 + (17/6)*n^3 + 4*n^2 + (19/6)*n + 1
n=5: a(n) = n^5 + (37/12)*n^4 + (11/2)*n^3 + (77/12)*n^2 + 4*n + 1
n=6: a(n) = n^6 + (197/60)*n^5 + 7*n^4 + (43/4)*n^3 + 10*n^2 + (149/30)*n + 1
n=7: a(n) = n^7 + (69/20)*n^6 + (17/2)*n^5 + (97/6)*n^4 + 20*n^3 + (893/60)*n^2 + 6*n + 1
Comments