cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267479 Number A(n,k) of words on {1,1,2,2,...,n,n} with longest increasing subsequence of length <= k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

This page as a plain text file.
%I A267479 #18 Oct 18 2018 16:57:11
%S A267479 1,1,0,1,1,0,1,1,1,0,1,1,6,1,0,1,1,6,43,1,0,1,1,6,90,352,1,0,1,1,6,90,
%T A267479 1879,3114,1,0,1,1,6,90,2520,47024,29004,1,0,1,1,6,90,2520,102011,
%U A267479 1331664,280221,1,0,1,1,6,90,2520,113400,5176504,41250519,2782476,1,0
%N A267479 Number A(n,k) of words on {1,1,2,2,...,n,n} with longest increasing subsequence of length <= k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
%H A267479 Alois P. Heinz, <a href="/A267479/b267479.txt">Antidiagonals n = 0..30, flattened</a>
%H A267479 Ferenc Balogh, <a href="https://arxiv.org/abs/1505.01389">A generalization of Gessel's generating function to enumerate words with double or triple occurrences in each letter and without increasing subsequences of a given length</a>, arXiv:1505.01389, 2015
%H A267479 Shalosh B. Ekhad and Doron Zeilberger, <a href="http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/sloane75.html">The Generating Functions Enumerating 12..d-Avoiding Words with r occurrences of each of 1,2, ..., n are D-finite for all d and all r</a>, 2014
%F A267479 A(n,k) = Sum_{i=0..k} A267480(n,i).
%e A267479 Square array A(n,k) begins:
%e A267479   1, 1,     1,       1,       1,       1,       1, ...
%e A267479   0, 1,     1,       1,       1,       1,       1, ...
%e A267479   0, 1,     6,       6,       6,       6,       6, ...
%e A267479   0, 1,    43,      90,      90,      90,      90, ...
%e A267479   0, 1,   352,    1879,    2520,    2520,    2520, ...
%e A267479   0, 1,  3114,   47024,  102011,  113400,  113400, ...
%e A267479   0, 1, 29004, 1331664, 5176504, 7235651, 7484400, ...
%Y A267479 Columns k=0-4 give: A000007, A000012, A220097, A266734, A266735.
%Y A267479 Main diagonal gives A000680.
%Y A267479 First lower diagonal gives A267532.
%Y A267479 Cf. A214015, A267480.
%K A267479 nonn,tabl
%O A267479 0,13
%A A267479 _Alois P. Heinz_, Jan 15 2016