This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A267479 #18 Oct 18 2018 16:57:11 %S A267479 1,1,0,1,1,0,1,1,1,0,1,1,6,1,0,1,1,6,43,1,0,1,1,6,90,352,1,0,1,1,6,90, %T A267479 1879,3114,1,0,1,1,6,90,2520,47024,29004,1,0,1,1,6,90,2520,102011, %U A267479 1331664,280221,1,0,1,1,6,90,2520,113400,5176504,41250519,2782476,1,0 %N A267479 Number A(n,k) of words on {1,1,2,2,...,n,n} with longest increasing subsequence of length <= k; square array A(n,k), n>=0, k>=0, read by antidiagonals. %H A267479 Alois P. Heinz, <a href="/A267479/b267479.txt">Antidiagonals n = 0..30, flattened</a> %H A267479 Ferenc Balogh, <a href="https://arxiv.org/abs/1505.01389">A generalization of Gessel's generating function to enumerate words with double or triple occurrences in each letter and without increasing subsequences of a given length</a>, arXiv:1505.01389, 2015 %H A267479 Shalosh B. Ekhad and Doron Zeilberger, <a href="http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/sloane75.html">The Generating Functions Enumerating 12..d-Avoiding Words with r occurrences of each of 1,2, ..., n are D-finite for all d and all r</a>, 2014 %F A267479 A(n,k) = Sum_{i=0..k} A267480(n,i). %e A267479 Square array A(n,k) begins: %e A267479 1, 1, 1, 1, 1, 1, 1, ... %e A267479 0, 1, 1, 1, 1, 1, 1, ... %e A267479 0, 1, 6, 6, 6, 6, 6, ... %e A267479 0, 1, 43, 90, 90, 90, 90, ... %e A267479 0, 1, 352, 1879, 2520, 2520, 2520, ... %e A267479 0, 1, 3114, 47024, 102011, 113400, 113400, ... %e A267479 0, 1, 29004, 1331664, 5176504, 7235651, 7484400, ... %Y A267479 Columns k=0-4 give: A000007, A000012, A220097, A266734, A266735. %Y A267479 Main diagonal gives A000680. %Y A267479 First lower diagonal gives A267532. %Y A267479 Cf. A214015, A267480. %K A267479 nonn,tabl %O A267479 0,13 %A A267479 _Alois P. Heinz_, Jan 15 2016