A267483 Triangle of coefficients of Gaussian polynomials [2n+3,2]_q represented as finite sum of terms (1+q^2)^k*q^(g-k), where k = 0,1,...,g with g=2n+1.
1, 1, 0, -1, 1, 1, 1, 2, -2, -3, 1, 1, 0, -2, 4, 7, -4, -5, 1, 1, 1, 3, -6, -13, 11, 16, -6, -7, 1, 1, 0, -3, 9, 22, -24, -40, 22, 29, -8, -9, 1, 1, 1, 4, -12, -34, 46, 86, -62, -91, 37, 46, -10, -11, 1, 1, 0, -4, 16, 50, -80, -166, 148, 239, -128, -174, 56, 67, -12, -13, 1, 1, 1, 5, -20, -70, 130, 296, -314, -553, 367, 541, -230, -297, 79, 92, -14, -15, 1, 1
Offset: 0
Examples
1,1; 0,-1,1,1; 1,2,-2,-3,1,1; 0,-2,4,7,-4,-5,1,1; 1,3,-6,-13,11,16,-6,-7,1,1; 0,-3,9,22,-24,-40,22,29,-8,-9,1,1; 1,4,-12,-34,46,86,-62,-91,37,46,-10,-11,1,1; 0,-4,16,50,-80,-166,148,239,-128,-174,56,67,-12,-13,1,1; 1,5,-20,-70,130,296,-314,-553,367,541,-230,-297,79,92,-14,-15,1,1;
Links
- Stephen O'Sullivan, Table of n, a(n) for n = 0..991
- S. O'Sullivan, A class of high-order Runge-Kutta-Chebyshev stability polynomials, Journal of Computational Physics, 300 (2015), 665-678.
- Wikipedia, Gaussian binomial coefficients.
Programs
-
Maple
A267483 := proc (n, k) local y: y := expand(subs(t = 0, diff((1+t)*product(1+t^2+2*t*ChebyshevT(i, x/2), i = 1 .. n+1),t$2)/2)): if k = 0 then subs(x = 0, y) else subs(x = 0, diff(y, x$k)/k!) end if: end proc: seq(seq(A267483(n, k), k = 0 .. 2*n+1), n = 0 .. 20); # More efficient: N:= 20: # to get rows 0 to N P[0]:= (1+t)*(t^2 + t*x + 1): B[0]:= 1+x: for n from 1 to N do P[n]:= expand(series(P[n-1]*(1+t^2+2*t*orthopoly[T](n+1,x/2)),t,3)); B[n]:= coeff(P[n],t,2); od: seq(seq(coeff(B[n],x,j),j=0..2*n+1),n=0..N); # From A267120 entry by Robert Israel
-
Mathematica
row[n_] := 1/2! D[(1+t)*Product[1+t^2+2*t*ChebyshevT[i, x/2], {i, 1, n+1}], {t, 2}] /. t -> 0 // CoefficientList[#, x]&; Table[row[n], {n, 0, 20}] // Flatten (* From A267120 entry by Jean-François Alcover *)
Formula
G.f. for row polynomial: G(n,x) = (d^2/dt^2)((1+t)*Product_{i=1..n+1}(1+t^2+2t*T(i,x/2)))/2!|_{t=0}.
Comments