A267485 Triangle of coefficients of Gaussian polynomials [2n+5,5]_q represented as finite sum of terms (1+q^2)^k*q^(g-k), where k = 0,1,...,g with g=5n.
1, 1, 2, -2, -3, 1, 1, -2, 2, 17, -9, -32, 12, 24, -6, -8, 1, 1, -2, -6, 25, 71, -80, -218, 126, 284, -106, -190, 48, 69, -11, -13, 1, 1, 3, -6, -70, 101, 506, -453, -1592, 980, 2658, -1201, -2608, 886, 1581, -400, -600, 108, 139, -16, -18, 1, 1, 3, 12, -88, -334, 779, 2774, -3226, -10389, 7709, 21620, -11608, -27865, 11496, 23591, -7645, -13512, 3427, 5276, -1020, -1385, 193, 234, -21, -23, 1, 1
Offset: 0
Examples
1; 1,2,-2,-3,1,1; -2,2,17,-9,-32,12,24,-6,-8,1,1; -2,-6,25,71,-80,-218,126,284,-106,-190,48,69,-11,-13,1,1;
Links
- Stephen O'Sullivan, Table of n, a(n) for n = 0..1070
- S. O'Sullivan, A class of high-order Runge-Kutta-Chebyshev stability polynomials, Journal of Computational Physics, 300 (2015), 665-678.
- Wikipedia, Gaussian binomial coefficients.
Programs
-
Maple
A267485 := proc (n, k) local y: y := expand(subs(t = 0, diff((1+t)*product(1+t^2+2*t*ChebyshevT(i, x/2), i = 1 .. n+2),t$5)/5!)): if k = 0 then subs(x = 0, y) else subs(x = 0, diff(y, x$k)/k!) end if: end proc: seq(seq(A267485(n, k), k = 0 .. 5*n), n = 0 .. 5);
-
Mathematica
row[n_] := 1/5! D[(1+t)*Product[1+t^2+2*t*ChebyshevT[i, x/2], {i, 1, n+1}], {t, 5}] /. t -> 0 // CoefficientList[#, x]&; Table[row[n], {n, 0, 20}] // Flatten (* From A267120 entry by Jean-François Alcover *)
Formula
G.f. for row polynomial: G(n,x) = (d^5/dt^5)((1+t)*Product_{i=1..n+1}(1+t^2+2t*T(i,x/2))/5!)|_{t=0}.
Extensions
Added row length
Comments