This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A267499 #23 Dec 19 2017 17:30:03 %S A267499 2,7,7,12,19,29,44,68,109,183 %N A267499 Number of fixed points of autobiographical numbers (A267491 ... A267498) in base n. %C A267499 For n>=5, it seems that a(n)=2^(n-4)+1/2*n^2-1/2*n describes the number of fixed points in base n. The formula is correct for 5<=n<=11, but unknown for n>11. We assume it's correct for all n>=5. %D A267499 Antonia Münchenbach and Nicole Anton George, "Eine Abwandlung der Conway-Folge", contribution to "Jugend forscht" 2016, 2016. %H A267499 Andre Kowacs, <a href="https://arxiv.org/abs/1708.06452">Studies on the Pea Pattern Sequence</a>, arXiv:1708.06452 [math.HO], 2017. %F A267499 a(n)=2^(n-4)+1/2*n^2-1/2*n for 5<=n<=11, unknown for n>11. %e A267499 In base two there are only two fixed-points, 111 and 1101001. %e A267499 In base 3, there are 7 fixed-points: 22, 10111, 11112, 100101, 1011122, 2021102, and 10010122. %Y A267499 Cf. A047841, A267491, A267492, A267493, A267494, A267495, A267496, A267497, A267498, A267499, A267500, A267502. %K A267499 nonn,base,more %O A267499 2,1 %A A267499 _Antonia Münchenbach_, Jan 16 2016