cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267499 Number of fixed points of autobiographical numbers (A267491 ... A267498) in base n.

This page as a plain text file.
%I A267499 #23 Dec 19 2017 17:30:03
%S A267499 2,7,7,12,19,29,44,68,109,183
%N A267499 Number of fixed points of autobiographical numbers (A267491 ... A267498) in base n.
%C A267499 For n>=5, it seems that a(n)=2^(n-4)+1/2*n^2-1/2*n describes the number of fixed points in base n. The formula is correct for 5<=n<=11, but unknown for n>11. We assume it's correct for all n>=5.
%D A267499 Antonia Münchenbach and Nicole Anton George, "Eine Abwandlung der Conway-Folge", contribution to "Jugend forscht" 2016, 2016.
%H A267499 Andre Kowacs, <a href="https://arxiv.org/abs/1708.06452">Studies on the Pea Pattern Sequence</a>, arXiv:1708.06452 [math.HO], 2017.
%F A267499 a(n)=2^(n-4)+1/2*n^2-1/2*n for 5<=n<=11, unknown for n>11.
%e A267499 In base two there are only two fixed-points, 111 and 1101001.
%e A267499 In base 3, there are 7 fixed-points: 22, 10111, 11112, 100101, 1011122, 2021102, and 10010122.
%Y A267499 Cf. A047841, A267491, A267492, A267493, A267494, A267495, A267496, A267497, A267498, A267499, A267500, A267502.
%K A267499 nonn,base,more
%O A267499 2,1
%A A267499 _Antonia Münchenbach_, Jan 16 2016