cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267500 Number of fixed points or cycles of autobiographical numbers (A267491 ... A267498) in base n.

This page as a plain text file.
%I A267500 #23 Dec 19 2017 18:36:53
%S A267500 2,10,7,12,21,38,67,116,201,354
%N A267500 Number of fixed points or cycles of autobiographical numbers (A267491 ... A267498) in base n.
%C A267500 For n>=5, it appears that a(n)=2^(n-3)+2*n^2-17*n+43. This formula is correct for 5<=n<=11, but may not be true for larger n.
%D A267500 Antonia Münchenbach and Nicole Anton George, "Eine Abwandlung der Conway-Folge", contribution to "Jugend forscht" 2016, 2016
%H A267500 Andre Kowacs, <a href="https://arxiv.org/abs/1708.06452">Studies on the Pea Pattern Sequence</a>, arXiv:1708.06452 [math.HO], 2017.
%F A267500 a(n) = 2^(n-3) + 2*n^2 - 17*n + 43, for 5<=n<=11.
%e A267500 In base two there are only two fixed-points, 111 and 1101001.
%e A267500 In base 3, there are 7 fixed-points: 22, 10111, 11112, 100101, 1011122, 2021102, 10010122 and 1 cycle of length 3 with 2012112, 1010102, 10011112.
%e A267500 In base 10, there are 109 fixed-points, 31 cycles of length 2 (62 numbers) and 10 cycles of length 3 (30 numbers).
%Y A267500 Cf. A047841, A267491, A267492, A267493, A267494, A267495, A267496, A267497, A267498, A267499, A267500, A267502.
%K A267500 nonn,base,more
%O A267500 2,1
%A A267500 _Antonia Münchenbach_, Jan 27 2016