This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A267503 #26 Feb 16 2021 02:09:10 %S A267503 2,3,7,11,23,31,43,47,67,71,139,211,283,311,331,431,463,659,683,691, %T A267503 863,947,967,1291,1303,1319,1367,1427,1699,1867,1979,1987,2011,2111, %U A267503 2131,2311,2531,3011,3083,4099,4423,4643,4691,4831,5171,5179,5683,5839,6299,6911,7283,7591,8563,8863,9227,9871,9931,10343,10627,11887,11923,12911 %N A267503 Primes p such that p-1 is squarefree and all prime divisors of p-1 other than 5 are also in the sequence. %C A267503 Is this sequence infinite? %H A267503 Robert Israel, <a href="/A267503/b267503.txt">Table of n, a(n) for n = 1..10000</a> %p A267503 N:= 20000: # to get all terms <= N %p A267503 Res:= 2: %p A267503 Agenda:= {3,11}: %p A267503 P:= {2,10}: %p A267503 g:= proc(t) local s; s:= p*t; if s < N then s else NULL fi end proc: %p A267503 while Agenda <> {} do %p A267503 p:= min(Agenda); %p A267503 Res:= Res, p; %p A267503 newP:= map(g , P); %p A267503 P:= P union newP; %p A267503 Agenda:= Agenda minus {p} union select(isprime, map(`+`,newP,1)); %p A267503 od: %p A267503 Res; # _Robert Israel_, Mar 15 2019 %t A267503 fa = FactorInteger; is[2, p_] = True; is[2, p_]; %t A267503 is[n_, p_] := PrimeQ[n] && MoebiusMu[n - 1] ≠ 0 && Union@Table[is[fa[n - 1][[i, 1]], p] || fa[n - 1][[ i, 1]] == p , {i, Length[fa[n - 1]]}] == {True}; Select[Prime[Range[10000]], is[#, 5] &] %Y A267503 Cf. A267504, A267505, A267506, A267507, A005117, A227455, A227007, A227006. %K A267503 nonn %O A267503 1,1 %A A267503 _José María Grau Ribas_, Jan 16 2016