This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A267538 #31 Feb 16 2025 08:33:29 %S A267538 1,11,110,1100,11001,110011,1100111,11001111,110011111,1100111111, %T A267538 11001111111,110011111111,1100111111111,11001111111111, %U A267538 110011111111111,1100111111111111,11001111111111111,110011111111111111,1100111111111111111,11001111111111111111 %N A267538 Binary representation of the middle column of the "Rule 143" elementary cellular automaton starting with a single ON (black) cell. %H A267538 Robert Price, <a href="/A267538/b267538.txt">Table of n, a(n) for n = 0..1000</a> %H A267538 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a> %H A267538 Stephen Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>, Wolfram Media, 2002; p. 55. %H A267538 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a> %H A267538 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a> %F A267538 Conjectures from _Colin Barker_, Jan 17 2016 and Apr 20 2019: (Start) %F A267538 a(n) = 11*a(n-1)-10*a(n-2) for n > 4. [n range correction by _Karl V. Keller, Jr._, Apr 23 2022] %F A267538 G.f.: (1-x^2+x^4) / ((1-x)*(1-10*x)). %F A267538 (End) %F A267538 Conjecture: a(n) = floor(9901*10^n/9000). - _Karl V. Keller, Jr._, Apr 24 2022 %t A267538 rule=143; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) mc=Table[catri[[k]][[k]],{k,1,rows}]; (* Keep only middle cell from each row *) Table[FromDigits[Take[mc,k]],{k,1,rows}] (* Binary Representation of Middle Column *) %Y A267538 Cf. A267533, A267539. %K A267538 nonn,easy %O A267538 0,2 %A A267538 _Robert Price_, Jan 16 2016