cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267539 Decimal representation of the middle column of the "Rule 143" elementary cellular automaton starting with a single ON (black) cell.

This page as a plain text file.
%I A267539 #45 Feb 16 2025 08:33:29
%S A267539 1,3,6,12,25,51,103,207,415,831,1663,3327,6655,13311,26623,53247,
%T A267539 106495,212991,425983,851967,1703935,3407871,6815743,13631487,
%U A267539 27262975,54525951,109051903,218103807,436207615,872415231,1744830463,3489660927,6979321855
%N A267539 Decimal representation of the middle column of the "Rule 143" elementary cellular automaton starting with a single ON (black) cell.
%H A267539 Robert Price, <a href="/A267539/b267539.txt">Table of n, a(n) for n = 0..1000</a>
%H A267539 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H A267539 Stephen Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>, Wolfram Media, 2002; p. 55.
%H A267539 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H A267539 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F A267539 Conjectures from _Colin Barker_, Jan 17 2016 and Apr 20 2019: (Start)
%F A267539 a(n) = 3*a(n-1)-2*a(n-2) for n > 4. [n range correction by _Karl V. Keller, Jr._, Apr 14 2022]
%F A267539 G.f.: (1-x^2+x^4) / ((1-x)*(1-2*x)).
%F A267539 (End)
%F A267539 {1,3,6} followed by A198274 (conjectured). - _Robert Price_, Jan 17 2016
%t A267539 rule=143; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* truncated list of each row *) mc=Table[catri[[k]][[k]],{k,1,rows}]; (* keep only middle cell from each row *) Table[FromDigits[Take[mc,k],2],{k,1,rows}]  (* binary representation of middle column *)
%o A267539 (PARI) a(n) = bitneg(3<<(n-3),n+1); \\ _Kevin Ryde_, Apr 15 2022
%Y A267539 Cf. A267533, A267538.
%K A267539 nonn,easy
%O A267539 0,2
%A A267539 _Robert Price_, Jan 16 2016