A267549 Primes prime(k) such that floor( (prime(k)/k)^2 ) <= prime(k+1) - prime(k).
3, 5, 7, 13, 23, 113
Offset: 1
Examples
For a(3) = 7, floor((7 / 4)^2) = 3 < 4 = 11 - 7. Note that all other a(n) use = instead of <.
Links
- Alexei Kourbatov, Upper bounds for prime gaps related to Firoozbakht's conjecture, arXiv preprint arXiv:1506.03042 [math.NT], 2015.
- John Nicholson, A Conjecture Sharper than Cramér's and Firoozbakht's, Mathematics Stack Exchange.
Programs
-
Mathematica
Select[Prime@ Range[10^5], Floor[(#/PrimePi@ #)^2] <= NextPrime@ # - # &] (* Michael De Vlieger, Jan 21 2016 *)
-
PARI
L=10^11;p=2;forprime(q=3,L,a=floor((p/primepi(p))^2.);if(a<=q-p, print1(p, ", "));p=q)
Comments