cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267584 a(0)=1; thereafter a(n) = 2^(1 + number of zeros in binary expansion of n).

This page as a plain text file.
%I A267584 #9 Oct 08 2023 13:41:33
%S A267584 1,2,4,2,8,4,4,2,16,8,8,4,8,4,4,2,32,16,16,8,16,8,8,4,16,8,8,4,8,4,4,
%T A267584 2,64,32,32,16,32,16,16,8,32,16,16,8,16,8,8,4,32,16,16,8,16,8,8,4,16,
%U A267584 8,8,4,8,4,4,2,128,64,64,32,64,32,32,16,64
%N A267584 a(0)=1; thereafter a(n) = 2^(1 + number of zeros in binary expansion of n).
%H A267584 N. J. A. Sloane, <a href="/A267584/b267584.txt">Table of n, a(n) for n = 0..20000</a>
%F A267584 For n >= 1, a(n) = 2^(1+A023416(n)).
%e A267584 12 = 1100 in binary, which contains two 0's, so a(12) = 2^3 = 8.
%t A267584 Join[{1},Table[2^(1+DigitCount[n,2,0]),{n,80}]] (* _Harvey P. Dale_, Oct 08 2023 *)
%Y A267584 Partial sums give A064194.
%Y A267584 Cf. A023416.
%K A267584 nonn
%O A267584 0,2
%A A267584 _N. J. A. Sloane_, Jan 17 2016