This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A267597 #58 Jul 14 2022 02:27:03 %S A267597 1,1,1,1,1,2,3,3,4,4,6,7,8,12,12,14,18,23,23,32,30,35,50,48,47,56,80, %T A267597 77,87,105,100,134,139,145,194,170,192,250 %N A267597 Number of sum-product knapsack partitions of n. Number of integer partitions y of n such that every sum of products of the parts of a multiset partition of any submultiset of y is distinct. %H A267597 Sean A. Irvine, <a href="https://github.com/archmageirvine/joeis/blob/master/src/irvine/oeis/a267/A267597.java">Java program</a> (github) %e A267597 The sequence of product-sum knapsack partitions begins: %e A267597 0: () %e A267597 1: (1) %e A267597 2: (2) %e A267597 3: (3) %e A267597 4: (4) %e A267597 5: (5) (3,2) %e A267597 6: (6) (4,2) (3,3) %e A267597 7: (7) (5,2) (4,3) %e A267597 8: (8) (6,2) (5,3) (4,4) %e A267597 9: (9) (7,2) (6,3) (5,4) %e A267597 10: (10) (8,2) (7,3) (6,4) (5,5) (4,3,3) %e A267597 11: (11) (9,2) (8,3) (7,4) (6,5) (5,4,2) (5,3,3) %e A267597 The partition (4,4,3) is not a sum-product knapsack partition of 11 because (4*4) = (4)+(4*3). %e A267597 A complete list of all sums of products of multiset partitions of submultisets of (5,4,2) is: %e A267597 0 = 0 %e A267597 (2) = 2 %e A267597 (4) = 4 %e A267597 (5) = 5 %e A267597 (2*4) = 8 %e A267597 (2*5) = 10 %e A267597 (4*5) = 20 %e A267597 (2*4*5) = 40 %e A267597 (2)+(4) = 6 %e A267597 (2)+(5) = 7 %e A267597 (2)+(4*5) = 22 %e A267597 (4)+(5) = 9 %e A267597 (4)+(2*5) = 14 %e A267597 (5)+(2*4) = 13 %e A267597 (2)+(4)+(5) = 11 %e A267597 These are all distinct, so (5,4,2) is a sum-product knapsack partition of 11. %t A267597 sps[{}]:={{}}; %t A267597 sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A267597 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A267597 rrtuks[n_]:=Select[IntegerPartitions[n],Function[q,UnsameQ@@Apply[Plus,Apply[Times,Union@@mps/@Union[Subsets[q]],{2}],{1}]]]; %t A267597 Table[Length[rrtuks[n]],{n,12}] %Y A267597 Cf. A001970, A066739, A108917, A275972, A292886, A316313, A318949, A319318, A319320, A319910, A319913. %Y A267597 Cf. A320052, A320053, A320054, A320055, A320056, A320057, A320058. %K A267597 nonn,more %O A267597 0,6 %A A267597 _Gus Wiseman_, Oct 04 2018 %E A267597 a(13)-a(37) from _Sean A. Irvine_, Jul 13 2022