cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267604 Decimal representation of the middle column of the "Rule 175" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 3, 6, 13, 27, 55, 111, 223, 447, 895, 1791, 3583, 7167, 14335, 28671, 57343, 114687, 229375, 458751, 917503, 1835007, 3670015, 7340031, 14680063, 29360127, 58720255, 117440511, 234881023, 469762047, 939524095, 1879048191, 3758096383, 7516192767
Offset: 0

Views

Author

Robert Price, Jan 18 2016

Keywords

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Programs

  • Mathematica
    rule=175; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) mc=Table[catri[[k]][[k]],{k,1,rows}]; (* Keep only middle cell from each row *) Table[FromDigits[Take[mc,k],2],{k,1,rows}]  (* Binary Representation of Middle Column *)

Formula

Conjectures from Colin Barker, Jan 18 2016 and Apr 20 2019: (Start)
a(n) = 3*a(n-1)-2*a(n-2) for n>3.
G.f.: (1-x^2+x^3) / ((1-x)*(1-2*x)). (End)
Conjectures from Altug Alkan, Jan 18 2016: (Start)
a(n) = A086224(n-2), for n > 1.
a(n) = ceiling((7/4)*2^n - 1). (End)