cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A267614 Decimal representation of the n-th iteration of the "Rule 185" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 1, 11, 47, 191, 767, 3071, 12287, 49151, 196607, 786431, 3145727, 12582911, 50331647, 201326591, 805306367, 3221225471, 12884901887, 51539607551, 206158430207, 824633720831, 3298534883327, 13194139533311, 52776558133247, 211106232532991, 844424930131967
Offset: 0

Views

Author

Robert Price, Jan 18 2016

Keywords

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Programs

  • Mathematica
    rule=185; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]],2],{k,1,rows}]   (* Decimal Representation of Rows *)

Formula

Conjectures from Colin Barker, Jan 18 2016 and Apr 20 2019: (Start)
a(n) = 5*a(n-1) - 4*a(n-2) for n>3.
G.f.: (1-4*x+10*x^2-4*x^3) / ((1-x)*(1-4*x)).
(End)
Empirical a(n) = 3*4^(n-1)-1 = A198693(n-1) for n>1. - Colin Barker, Nov 25 2016 and Apr 20 2019

Extensions

Removed an unjustified claim that Colin Barker's conjectures are correct. Removed a program based on a conjecture. - Michael De Vlieger, Jun 13 2022
Showing 1-1 of 1 results.