cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267623 Binary representation of the middle column of the "Rule 187" elementary cellular automaton starting with a single ON (black) cell.

This page as a plain text file.
%I A267623 #49 Feb 16 2025 08:33:29
%S A267623 1,10,101,1011,10111,101111,1011111,10111111,101111111,1011111111,
%T A267623 10111111111,101111111111,1011111111111,10111111111111,
%U A267623 101111111111111,1011111111111111,10111111111111111,101111111111111111,1011111111111111111,10111111111111111111
%N A267623 Binary representation of the middle column of the "Rule 187" elementary cellular automaton starting with a single ON (black) cell.
%C A267623 Also, The binary representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 643", based on the 5-celled von Neumann neighborhood, initialized with a single black (ON) cell at stage zero. See A283508.
%D A267623 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
%H A267623 Robert Price, <a href="/A267623/b267623.txt">Table of n, a(n) for n = 0..1000</a>
%H A267623 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H A267623 S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H A267623 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H A267623 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F A267623 Conjectures from _Colin Barker_, Jan 19 2016 and Apr 16 2019: (Start)
%F A267623 a(n) = 11*a(n-1)-10*a(n-2) for n>2.
%F A267623 G.f.: (1-x+x^2) / ((1-x)*(1-10*x)).
%F A267623 (End)
%F A267623 Empirical: a(n) = (91*10^n - 10) / 90 for n>0. - _Colin Barker_, Mar 10 2017
%F A267623 It also appears that a(n) = floor(91*10^n/90). - _Karl V. Keller, Jr._, May 28 2022
%p A267623 # Rule 187: value in generation r and column c, where c=0 is the central one
%p A267623 r187 := proc(r::integer,c::integer)
%p A267623     option remember;
%p A267623     local up ;
%p A267623     if r = 0 then
%p A267623         if c = 0 then
%p A267623             1;
%p A267623         else
%p A267623             0;
%p A267623         end if;
%p A267623     else
%p A267623         # previous 3 bits
%p A267623         [procname(r-1,c+1),procname(r-1,c),procname(r-1,c-1)] ;
%p A267623         up := op(3,%)+2*op(2,%)+4*op(1,%) ;
%p A267623         # rule 187 = 10111011_2: {6,2}->0, all others ->1
%p A267623         if up in {6,2} then
%p A267623             0;
%p A267623         else
%p A267623             1 ;
%p A267623         end if;
%p A267623     end if;
%p A267623 end proc:
%p A267623 A267623 := proc(n)
%p A267623     b := [seq(r187(r,0),r=0..n)] ;
%p A267623     add(op(-i,b)*2^(i-1),i=1..nops(b)) ;
%p A267623     A007088(%) ;
%p A267623 end proc:
%p A267623 smax := 30 ;
%p A267623 L := [seq(A267623(n),n=0..smax)] ; # _R. J. Mathar_, Apr 12 2019
%t A267623 rule=187; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) mc=Table[catri[[k]][[k]],{k,1,rows}]; (* Keep only middle cell from each row *) Table[FromDigits[Take[mc,k]],{k,1,rows}]  (* Binary Representation of Middle Column *)
%Y A267623 Cf. A267621, A283508, A083329.
%K A267623 nonn,easy
%O A267623 0,2
%A A267623 _Robert Price_, Jan 18 2016
%E A267623 Removed an unjustified claim that _Colin Barker_'s conjectures are correct. Removed a program based on a conjecture. - _N. J. A. Sloane_, Jun 13 2022