A267624
Number of n X n arrays containing n copies of 0..n-1 with every element equal to or 1 greater than any west neighbor modulo n and the upper left element equal to 0.
Original entry on oeis.org
1, 3, 39, 2386, 679735, 873319806, 4934982616333
Offset: 1
Some solutions for n=4
..0..0..1..1....0..0..1..2....0..0..1..2....0..0..1..2....0..0..0..1
..1..2..3..0....0..0..1..1....1..2..2..3....3..3..0..1....2..2..3..3
..3..0..1..2....1..2..3..3....3..3..0..1....1..2..2..3....1..1..2..3
..2..2..3..3....2..2..3..3....0..1..2..3....1..2..3..0....2..3..0..1
A267630
Number of 4Xn arrays containing n copies of 0..4-1 with every element equal to or 1 greater than any west neighbor modulo 4 and the upper left element equal to 0.
Original entry on oeis.org
6, 27, 208, 2386, 32208, 445970, 6039160, 80742586, 1086798652, 14898269746, 208430268352, 2964609577834, 42639468240764, 617605254789776, 8990677585470960, 131473208822453124, 1931423573382740480
Offset: 1
Some solutions for n=4
..0..1..1..2....0..0..0..0....0..0..1..1....0..1..2..2....0..0..0..1
..3..3..3..0....1..1..2..2....2..3..0..1....0..1..2..3....0..1..1..2
..0..0..1..2....1..1..2..2....2..2..3..3....3..0..1..2....1..2..3..3
..1..2..2..3....3..3..3..3....0..1..2..3....3..3..0..1....2..2..3..3
A267625
Number of nX2 arrays containing 2 copies of 0..n-1 with every element equal to or 1 greater than any west neighbor modulo n and the upper left element equal to 0.
Original entry on oeis.org
1, 3, 7, 27, 138, 900, 7110, 66150, 708120, 8573040, 115781400, 1725154200, 28103922000, 496799503200, 9469060801200, 193546022670000
Offset: 1
Some solutions for n=4
..0..1....0..0....0..1....0..0....0..0....0..1....0..1....0..0....0..1....0..1
..3..3....3..3....2..3....1..1....3..3....2..3....2..3....1..1....3..0....3..3
..0..1....1..2....1..2....2..3....1..1....2..3....0..1....3..3....1..2....2..2
..2..2....1..2....3..0....2..3....2..2....0..1....2..3....2..2....2..3....0..1
A267626
Number of nX3 arrays containing 3 copies of 0..n-1 with every element equal to or 1 greater than any west neighbor modulo n and the upper left element equal to 0.
Original entry on oeis.org
1, 10, 39, 208, 1576, 14830, 168500, 2247280, 34423760, 596248800, 11529957600, 246360114000
Offset: 1
Some solutions for n=4
..0..1..2....0..1..2....0..1..2....0..0..0....0..0..1....0..1..2....0..0..1
..0..1..1....0..1..1....3..0..1....1..1..1....0..1..2....0..1..2....1..2..3
..2..3..3....2..2..3....3..3..0....2..2..2....1..2..3....3..0..1....3..0..1
..2..3..0....3..3..0....1..2..2....3..3..3....2..3..3....2..3..3....2..2..3
A267627
Number of nX4 arrays of permutations of 4 copies of 0..n-1 with every element equal to or 1 greater than any west neighbor modulo n and the upper left element equal to 0.
Original entry on oeis.org
1, 35, 265, 2386, 29387, 469605, 8889180, 196362845, 4969038690
Offset: 1
Some solutions for n=4
..0..0..1..1....0..0..1..2....0..0..1..2....0..1..1..2....0..1..2..3
..1..1..2..2....1..1..2..3....3..3..0..1....3..0..1..2....2..3..0..1
..2..3..3..0....0..1..2..3....2..3..3..0....2..3..0..0....0..1..2..2
..2..3..3..0....2..3..3..0....1..1..2..2....1..2..3..3....3..3..0..1
A267628
Number of nX5 arrays of permutations of 5 copies of 0..n-1 with every element equal to or 1 greater than any west neighbor modulo n and the upper left element equal to 0.
Original entry on oeis.org
1, 126, 1802, 32208, 679735, 19027506, 651123366, 25708254936
Offset: 1
Some solutions for n=4
..0..0..1..1..2....0..1..1..2..3....0..0..1..1..2....0..1..2..3..0
..1..2..3..3..3....1..1..2..3..3....0..0..1..2..3....1..2..3..3..0
..2..2..3..0..0....3..3..0..0..0....1..2..2..3..3....1..1..2..2..3
..1..1..2..3..0....0..1..2..2..2....1..2..3..3..0....3..0..0..1..2
A267631
Number of 5Xn arrays containing n copies of 0..5-1 with every element equal to or 1 greater than any west neighbor modulo 5 and the upper left element equal to 0.
Original entry on oeis.org
24, 138, 1576, 29387, 679735, 17761798, 490407156, 13531702872, 364823204989, 9669161777304
Offset: 1
Some solutions for n=4
..0..0..1..1....0..1..1..2....0..1..2..3....0..1..2..3....0..0..1..1
..4..0..1..1....1..2..3..4....0..1..1..2....4..4..0..0....2..2..2..3
..2..2..3..4....2..3..4..4....4..4..0..1....1..2..3..4....4..0..0..1
..2..3..4..0....0..0..1..2....2..3..3..4....2..3..3..4....3..4..4..4
..2..3..3..4....3..3..4..0....2..3..4..0....0..1..1..2....1..2..3..3
Showing 1-7 of 7 results.
Comments