A267638 Number of nX2 0..1 arrays with every repeated value in every row and column unequal to the previous repeated value, and new values introduced in row-major sequential order.
2, 8, 18, 50, 98, 242, 450, 1058, 1922, 4418, 7938, 18050, 32258, 72962, 130050, 293378, 522242, 1176578, 2093058, 4712450, 8380418, 18862082, 33538050, 75472898, 134184962, 301940738, 536805378, 1207861250, 2147352578, 4831641602
Offset: 1
Keywords
Examples
Some solutions for n=6 ..0..1....0..0....0..0....0..1....0..1....0..1....0..1....0..0....0..0....0..0 ..1..0....1..1....1..0....1..0....0..1....1..1....1..1....0..1....1..1....0..1 ..0..1....1..1....0..1....1..1....1..0....0..0....0..0....1..0....0..0....1..0 ..1..0....0..0....1..1....0..0....0..0....0..1....0..0....1..0....1..1....1..0 ..1..0....1..1....0..0....0..1....1..1....1..0....1..1....0..1....0..0....0..1 ..0..1....0..0....0..0....1..1....1..0....0..0....1..1....0..0....1..0....1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A267644.
Formula
Empirical: a(n) = a(n-1) +6*a(n-2) -6*a(n-3) -8*a(n-4) +8*a(n-5).
Empirical: G.f.: -2*x*(1+3*x-x^2-2*x^3+2*x^4) / ( (x-1)*(2*x+1)*(2*x-1)*(2*x^2-1) ). - R. J. Mathar, Jan 26 2016
Comments