This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A267640 #4 Jan 18 2016 20:09:16 %S A267640 5,50,189,1015,2887,12623,32303,131673,319541,1277029,3001299, %T A267640 12025963,27634899,112196145,253256721,1046786789,2326596207, %U A267640 9807566523,21492349119,92416468657,199851940021,876060050789,1870775860883 %N A267640 Number of nX4 0..1 arrays with every repeated value in every row and column unequal to the previous repeated value, and new values introduced in row-major sequential order. %C A267640 Column 4 of A267644. %H A267640 R. H. Hardin, <a href="/A267640/b267640.txt">Table of n, a(n) for n = 1..210</a> %F A267640 Empirical: a(n) = 5*a(n-1) +57*a(n-2) -319*a(n-3) -1391*a(n-4) +9145*a(n-5) +18468*a(n-6) -155864*a(n-7) -132459*a(n-8) +1760919*a(n-9) +254909*a(n-10) -13917643*a(n-11) +4638860*a(n-12) +79124590*a(n-13) -54513835*a(n-14) -327439835*a(n-15) +320570891*a(n-16) +985750855*a(n-17) -1225493352*a(n-18) -2130193456*a(n-19) +3242322831*a(n-20) +3203056845*a(n-21) -6029044853*a(n-22) -3134570201*a(n-23) +7833336809*a(n-24) +1655845581*a(n-25) -6967179434*a(n-26) -21114162*a(n-27) +4096193100*a(n-28) -565113380*a(n-29) -1504086120*a(n-30) +349509240*a(n-31) +309916800*a(n-32) -91209600*a(n-33) -27216000*a(n-34) +9072000*a(n-35) %e A267640 Some solutions for n=6 %e A267640 ..0..1..1..0....0..1..0..0....0..0..1..0....0..0..1..1....0..0..1..1 %e A267640 ..1..1..0..1....1..0..1..1....1..1..0..1....1..0..1..0....1..0..1..1 %e A267640 ..0..0..1..0....0..1..0..0....1..0..1..1....0..1..0..0....0..1..0..0 %e A267640 ..1..1..0..1....0..0..1..1....0..0..1..0....1..0..1..1....1..0..1..0 %e A267640 ..0..0..1..0....1..0..1..1....0..1..0..0....0..1..0..0....1..1..0..1 %e A267640 ..0..1..0..0....1..1..0..0....1..0..1..1....1..0..1..1....0..1..0..0 %Y A267640 Cf. A267644. %K A267640 nonn %O A267640 1,1 %A A267640 _R. H. Hardin_, Jan 18 2016