A267644 T(n,k)=Number of nXk 0..1 arrays with every repeated value in every row and column unequal to the previous repeated value, and new values introduced in row-major sequential order.
1, 2, 2, 3, 8, 3, 5, 18, 18, 5, 7, 50, 51, 50, 7, 11, 98, 189, 189, 98, 11, 15, 242, 429, 1015, 429, 242, 15, 23, 450, 1353, 2887, 2887, 1353, 450, 23, 31, 1058, 2829, 12623, 8917, 12623, 2829, 1058, 31, 47, 1922, 8427, 32303, 47715, 47715, 32303, 8427, 1922, 47, 63
Offset: 1
Examples
Some solutions for n=5 k=4 ..0..1..0..1....0..1..0..0....0..1..0..0....0..1..0..0....0..1..0..1 ..0..0..1..0....1..0..1..0....1..0..1..1....1..1..0..0....1..0..1..0 ..1..1..0..1....1..0..0..1....0..1..0..0....0..0..1..1....0..1..1..0 ..1..0..0..1....0..1..1..0....1..0..1..0....0..1..0..0....1..0..0..1 ..0..0..1..0....0..1..0..1....0..1..0..1....1..0..1..1....1..1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..220
Crossrefs
Column 1 is A052955(n-1).
Formula
Empirical for column k:
k=1: a(n) = a(n-1) +2*a(n-2) -2*a(n-3)
k=2: a(n) = a(n-1) +6*a(n-2) -6*a(n-3) -8*a(n-4) +8*a(n-5)
k=3: [order 11]
k=4: [order 35]
k=5: [order 93]
Comments