cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267644 T(n,k)=Number of nXk 0..1 arrays with every repeated value in every row and column unequal to the previous repeated value, and new values introduced in row-major sequential order.

Original entry on oeis.org

1, 2, 2, 3, 8, 3, 5, 18, 18, 5, 7, 50, 51, 50, 7, 11, 98, 189, 189, 98, 11, 15, 242, 429, 1015, 429, 242, 15, 23, 450, 1353, 2887, 2887, 1353, 450, 23, 31, 1058, 2829, 12623, 8917, 12623, 2829, 1058, 31, 47, 1922, 8427, 32303, 47715, 47715, 32303, 8427, 1922, 47, 63
Offset: 1

Views

Author

R. H. Hardin, Jan 18 2016

Keywords

Comments

Table starts
..1....2.....3.......5.......7........11........15..........23..........31
..2....8....18......50......98.......242.......450........1058........1922
..3...18....51.....189.....429......1353......2829........8427.......16899
..5...50...189....1015....2887.....12623.....32303......131673......319541
..7...98...429....2887....8917.....47715....128441......647101.....1614281
.11..242..1353...12623...47715....343145...1117207.....7479533....22499181
.15..450..2829...32303..128441...1117207...3696933....30649693....90914453
.23.1058..8427..131673..647101...7479533..30649693...330654951..1225925501
.31.1922.16899..319541.1614281..22499181..90914453..1225925501..4301737251
.47.4418.49443.1277029.8168679.150415627.784186403.13431652713.62439362175

Examples

			Some solutions for n=5 k=4
..0..1..0..1....0..1..0..0....0..1..0..0....0..1..0..0....0..1..0..1
..0..0..1..0....1..0..1..0....1..0..1..1....1..1..0..0....1..0..1..0
..1..1..0..1....1..0..0..1....0..1..0..0....0..0..1..1....0..1..1..0
..1..0..0..1....0..1..1..0....1..0..1..0....0..1..0..0....1..0..0..1
..0..0..1..0....0..1..0..1....0..1..0..1....1..0..1..1....1..1..0..0
		

Crossrefs

Column 1 is A052955(n-1).

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +2*a(n-2) -2*a(n-3)
k=2: a(n) = a(n-1) +6*a(n-2) -6*a(n-3) -8*a(n-4) +8*a(n-5)
k=3: [order 11]
k=4: [order 35]
k=5: [order 93]