This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A267654 #19 Mar 04 2016 07:25:41 %S A267654 2,4,2,4,6,4,6,4,6,8,6,8,6,8,6,8,10,8,10,8,10,8,10,8,10,12,10,12,10, %T A267654 12,10,12,10,12,10,12,14,12,14,12,14,12,14,12,14,12,14,12,14,16,14,16, %U A267654 14,16,14,16,14,16,14,16,14,16,14,16 %N A267654 Irregular triangle of palindromic subsequences. Every row has 2*n+1 terms. From the second row, there are only two alternated numbers: 2*n+4 and 2*n+2. %C A267654 Row sums = 2, 10, 26, 50, ... = A069894(n). %C A267654 Starting from A053186(n) = %C A267654 0, for b(n) %C A267654 0, 1, 2, for c(n) %C A267654 0, 1, 2, 3, 4, for d(n) %C A267654 0, 1, 2, 3, 4, 5, 6, %C A267654 etc, %C A267654 a(n) is used for %C A267654 1) b(n+1) = b(n) + (a(0)=2) i.e. 0, 2, 4, 6, ... = A005843(n). %C A267654 2) c(n+3) = c(n) + (period 3:repeat 4, 2, 4) i.e. 0, 1, 2, 4, 3, 6, 8, ... = A265667(n). %C A267654 3) d(n+5) = d(n) + (period 5:repeat 6, 4, 6, 4, 6) i.e. 0, 1, 2, 3, 4, 6, 5, 8, 7, 10, ... = A265734(n). %C A267654 Etc. %C A267654 a(n) has a companion with the same terms,differently distributed,yielding permutations of the nonnegative numbers. See A265672. %C A267654 a(n) other writing (by pairs): %C A267654 2, 4, 2, 4, %C A267654 6, 4, 6, 4, %C A267654 6, 8, 6, 8, 6, 8, 6, 8, %C A267654 10 8, 10, 8, 10, 8, 10, 8, %C A267654 10, 12, 10, 12, 10, 12, 10, 12, 10, 12, 10, 12, %C A267654 14, 12, 14, 12, 14, 12, 14, 12, 14, 12, 14, 12, %C A267654 etc. %C A267654 First column: A168276(n+2). Second column: A168273(n+2). %C A267654 Row sums: 12, 20, 56, 72, ... = 4*A074378(n+1). %C A267654 The last term of the successive rows is the number of their terms. %C A267654 Main diagonal: A005843(n+1). %F A267654 a(n) = 2 * A086520(n+2). %F A267654 a(2n) = 4*n + 2 times 4*n + 2 = 2, 2, 6, 6, 6, 6, 6, 6, 10,.... %F A267654 a(2n+1) = 4*(n+1) times 4*(n+1) = 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 12, .... %e A267654 The triangle is %e A267654 2, %e A267654 4, 2, 4, %e A267654 6, 4, 6, 4, 6, %e A267654 8, 6, 8, 6, 8, 6, 8, %e A267654 etc. %t A267654 Table[2 (n - 1) + 2 (Boole@ OddQ@ k + 1), {n, 0, 7}, {k, 2 n + 1}] // Flatten (* _Michael De Vlieger_, Jan 19 2016 *) %Y A267654 Cf. A007395, A005843, A008586, A016825, A053186, A069894, A074378, A086520, A168273, A168276, A265667, A265672, A265734. %K A267654 nonn,tabf %O A267654 0,1 %A A267654 _Paul Curtz_, Jan 19 2016