cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267662 Number of nX3 0..1 arrays with every repeated value in every row unequal to the previous repeated value, and in every column equal to the previous repeated value, and new values introduced in row-major sequential order.

This page as a plain text file.
%I A267662 #4 Jan 19 2016 08:03:55
%S A267662 3,18,108,453,1800,6654,23967,84552,295176,1023321,3533484,12170886,
%T A267662 41859891,143844024,494032074,1696231551,5822855280,19986766938,
%U A267662 68599945065,235446171408,808076493654,2773384864119,9518456958738
%N A267662 Number of nX3 0..1 arrays with every repeated value in every row unequal to the previous repeated value, and in every column equal to the previous repeated value, and new values introduced in row-major sequential order.
%C A267662 Column 3 of A267667.
%H A267662 R. H. Hardin, <a href="/A267662/b267662.txt">Table of n, a(n) for n = 1..210</a>
%F A267662 Empirical: a(n) = 8*a(n-1) -13*a(n-2) -44*a(n-3) +135*a(n-4) +39*a(n-5) -375*a(n-6) +84*a(n-7) +461*a(n-8) -139*a(n-9) -294*a(n-10) +69*a(n-11) +98*a(n-12) -14*a(n-13) -16*a(n-14) +a(n-15) +a(n-16)
%e A267662 Some solutions for n=8
%e A267662 ..0..0..1....0..1..0....0..1..1....0..0..1....0..0..1....0..0..1....0..1..1
%e A267662 ..1..0..0....1..0..1....1..0..1....1..1..0....0..1..0....0..1..0....0..0..1
%e A267662 ..0..1..0....1..1..0....0..1..0....0..1..0....1..1..0....0..0..1....0..1..0
%e A267662 ..1..0..1....1..0..0....1..0..1....1..0..0....0..0..1....1..1..0....1..0..1
%e A267662 ..1..0..0....1..1..0....1..0..0....0..1..0....0..1..0....0..1..0....0..1..0
%e A267662 ..1..1..0....1..0..1....1..0..1....0..1..0....1..0..0....0..0..1....1..0..1
%e A267662 ..1..0..0....1..1..0....0..1..1....0..1..0....0..1..0....0..1..0....0..1..0
%e A267662 ..1..0..1....1..0..1....1..0..0....0..1..1....1..0..1....0..1..1....1..0..1
%Y A267662 Cf. A267667.
%K A267662 nonn
%O A267662 1,1
%A A267662 _R. H. Hardin_, Jan 19 2016