A267663 Number of n X 4 0..1 arrays with every repeated value in every row unequal to the previous repeated value, and in every column equal to the previous repeated value, and new values introduced in row-major sequential order.
5, 50, 500, 3143, 18432, 98438, 508681, 2560344, 12721832, 62688891, 307514468, 1504686646, 7352965785, 35912894408, 175383062746, 856630710989, 4185293733440, 20456112775414, 100023287817835, 489294036823648
Offset: 1
Keywords
Examples
Some solutions for n=6 ..0..1..0..0....0..0..1..1....0..1..0..0....0..1..0..0....0..0..1..0 ..0..1..0..0....1..0..1..0....0..1..1..0....1..0..0..1....1..0..1..1 ..0..1..0..0....1..0..1..1....1..0..1..0....1..1..0..0....0..1..1..0 ..0..0..1..0....1..1..0..1....0..1..0..0....0..1..0..1....1..0..1..1 ..1..1..0..1....0..0..1..1....0..0..1..0....1..1..0..1....1..0..1..0 ..0..1..1..0....1..0..0..1....0..1..0..0....0..0..1..1....1..1..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
- R. H. Hardin, Empirical recurrence of order 80
Crossrefs
Cf. A267667.
Formula
Empirical recurrence of order 80 (see link above).
Comments