cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A267684 Binary representation of the n-th iteration of the "Rule 203" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 100, 11011, 1110111, 111101111, 11111011111, 1111110111111, 111111101111111, 11111111011111111, 1111111110111111111, 111111111101111111111, 11111111111011111111111, 1111111111110111111111111, 111111111111101111111111111, 11111111111111011111111111111
Offset: 0

Views

Author

Robert Price, Jan 19 2016

Keywords

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Essentially the same as A138148.

Programs

  • Mathematica
    rule=203; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]]],{k,1,rows}]   (* Binary Representation of Rows *)
    LinearRecurrence[{111, -1110, 1000}, {1, 100, 11011, 1110111, 111101111}, 20] (* Paolo Xausa, Aug 07 2025 *)
  • Python
    print([1, 100]+[(10*100**n - 9*10**n - 1)//9 for n in range(2, 50)]) # Karl V. Keller, Jr., Jun 07 2022

Formula

From Colin Barker, Jan 19 2016 and Apr 17 2019: (Start)
a(n) = 111*a(n-1)-1110*a(n-2)+1000*a(n-3) for n>4.
G.f.: (1-11*x+1021*x^2-2110*x^3+1000*x^4) / ((1-x)*(1-10*x)*(1-100*x)).
(End)
The above conjectures are correct. Also a(n) = (10*100^n - 9*10^n - 1)/9 for n > 1. - Karl V. Keller, Jr., Jun 07 2022

A267812 Decimal representation of the n-th iteration of the "Rule 217" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 1, 27, 119, 495, 2015, 8127, 32639, 130815, 523775, 2096127, 8386559, 33550335, 134209535, 536854527, 2147450879, 8589869055, 34359607295, 137438691327, 549755289599, 2199022206975, 8796090925055, 35184367894527, 140737479966719, 562949936644095
Offset: 0

Views

Author

Robert Price, Jan 20 2016

Keywords

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Programs

  • Mathematica
    rule=217; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]],2],{k,1,rows}] (* Decimal Representation of Rows *)

Formula

Conjectures from Colin Barker, Jan 22 2016: (Start)
a(n) = 7*a(n-1)-14*a(n-2)+8*a(n-3) for n>4.
G.f.: (1-6*x+34*x^2-64*x^3+32*x^4) / ((1-x)*(1-2*x)*(1-4*x)).
(End)
Showing 1-2 of 2 results.