cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A267686 Positive integers n such that n^4 = a^3 + b^3 = x^2 + y^2 + z^2 where x, y, z, a and b are positive integers, is soluble.

Original entry on oeis.org

9, 28, 35, 54, 65, 72, 91, 126, 133, 134, 152, 182, 183, 189, 201, 217, 219, 224, 243, 250, 273, 278, 280, 309, 341, 344, 351, 370, 399, 407, 422, 432, 453, 468, 497, 513, 520, 539, 559, 576, 579, 637, 651, 658, 686, 728, 730, 737, 756, 793, 854, 855
Offset: 1

Views

Author

Altug Alkan, Jan 19 2016

Keywords

Comments

Inspired by intersection of A000408, A000583 and A003325.
Corresponding fourth powers are 6561, 614656, 1500625, 8503056, 17850625, 26873856, 68574961, 252047376, 312900721, 322417936, 533794816, 1097199376, 1121513121, 1275989841, 1632240801, 2217373921, 2300257521, 2517630976, 3486784401, ...
2 is the first number that its 4th power, 2^4, is the sum of 2 positive cubes and is not the sum of 3 nonzero squares. 16 is the second number for this case. So 2 and 16 are not in this sequence.

Examples

			9 is a term because 9^4 = 9^3 + 18^3 = 1^2 + 28^2 + 76^2.
28 is a term because 28^4 = 28^3 + 84^3 = 64^2 + 144^2 + 768^2.
35 is a term because 35^4 = 70^3 + 105^3 = 1^2 + 600^2 + 1068^2.
54 is a term because 54^4 = 162^3 + 162^3 = 12^2 + 264^2 + 2904^2.
399 is a term because 399^4 = 665^3 + 2926^3 = 17^2 + 11236^2 + 158804^2.
		

Crossrefs

Programs

  • PARI
    isA000408(n) = {my(a, b); a=1; while(a^2+1A003325(n)=#select(v->min(v[1], v[2])>0, thue(T, n))>0
    for(n=3, 1e3, if(isA000408(n^4) && isA003325(n^4), print1(n, ", ")));

Extensions

Added missing term a(32), Chai Wah Wu, Jan 31 2016

A272174 Values of a^3 + b^3 such that the equation a^3 + b^3 = x^2 + y^2 + z^2 is not soluble where a, b > 0 and x, y, z >= 0.

Original entry on oeis.org

28, 351, 407, 559, 855, 1008, 1343, 1792, 2071, 3087, 3383, 3439, 3591, 3887, 4375, 4439, 5103, 5488, 6119, 6175, 7471, 8343, 9207, 10864, 10991, 11375, 11772, 12175, 12231, 12383, 12636, 12679, 13167, 13895, 14023, 14167, 14364, 14911, 16263, 16956, 17199, 17919, 17999
Offset: 1

Views

Author

Altug Alkan, Apr 21 2016

Keywords

Comments

Intersection of A003325 and A004215.

Examples

			28 is a term because 28 = 1^3 + 3^3 and 28 is the sum of 4 but no fewer nonzero squares.
		

Crossrefs

Programs

  • PARI
    isA004215(n) = {local(fouri, j) ; fouri=1 ; while( n >=7*fouri, if( n % fouri ==0, j= n/fouri -7 ; if( j % 8 ==0, return(1) ) ; ) ; fouri *= 4 ; ) ; return(0);}
    isA003325(n) = {for(k=1, sqrtnint(n\2, 3), ispower(n-k^3, 3) && return(1));}
    lista(nn) = for(n=1, nn, if(isA004215(n) && isA003325(n), print1(n, ", ")));

A273843 Numbers that are the average of 3 nonzero squares and the average of 2 positive cubes.

Original entry on oeis.org

1, 8, 14, 27, 36, 63, 64, 76, 112, 140, 172, 185, 216, 234, 260, 288, 343, 364, 378, 427, 504, 512, 536, 608, 666, 679, 728, 729, 868, 896, 972, 1000, 1030, 1099, 1112, 1120, 1161, 1270, 1331, 1376, 1404, 1463, 1480, 1628, 1688, 1728, 1750, 1764, 1859, 2052, 2080, 2156
Offset: 1

Views

Author

Altug Alkan, Jun 01 2016

Keywords

Comments

Values of (x^3 + y^3)/2 such that (x^3 + y^3)/2 = (a^2 + b^2 + c^2)/3 where x, y, a, b, c > 0, is soluble.

Examples

			14 is a term because 14 = (1^3 + 3^3)/2 = (1^2 + 4^2 + 5^2)/3.
		

Crossrefs

Programs

  • Mathematica
    repQ[n_,k_,e_] := {} != Quiet@ IntegerPartitions[n, {k}, Range[n^ (1/e) ]^e, 1]; Select[Range@ 2156, repQ[2*#,2,3] && repQ[3*#,3,2] &] (* Giovanni Resta, Jun 03 2016 *)
  • PARI
    isA000408(n) = my(a, b) ; a=1 ; while(a^2+1A003325(n) = for(k=1, sqrtnint(n\2, 3), ispower(n-k^3, 3) && return(1));
    lista(nn) = for(n=1, nn, if(isA003325(2*n) && isA000408(3*n), print1(n, ", ")));
Showing 1-3 of 3 results.