This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A267711 #22 Feb 09 2021 01:57:15 %S A267711 0,1,2,15,16,17,30,31,32,45,46,47,60,61,62,75,76,77,90,91,92,105,106, %T A267711 107,120,121,122,135,136,137,150,151,152,165,166,167,180,181,182,195, %U A267711 196,197,210,211,212,225,226,227,240,241,242,255,256,257,270,271,272,285,286 %N A267711 Numbers k such that k mod 3 = k mod 5. %C A267711 Periodic differences between the consecutive terms (1,1,13,1,1,13,1,1,13,1,1...). %H A267711 Colin Barker, <a href="/A267711/b267711.txt">Table of n, a(n) for n = 1..1000</a> %H A267711 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,1,-1). %F A267711 a(n) = (1/3)*(15*n - 12*cos((2*Pi*n)/3) + 4*sqrt(3)*sin((2*Pi*n)/3) - 27). %F A267711 G.f.: x^2*(13*x^2+x+1) / ((x-1)^2*(x^2+x+1)). %F A267711 a(n) = a(n-1) + a(n-3) - a(n-4) for n > 4. - _Colin Barker_, Jan 28 2016 %t A267711 Select[ Range[0, 10000], (Mod[#, 3] == Mod[#, 5]) &] %o A267711 (PARI) lista(nn) = for(n=0, nn, if(n%3 == n%5, print1(n, ", "))); \\ _Altug Alkan_, Jan 19 2016 %o A267711 (PARI) concat(0, Vec(x^2*(1+x+13*x^2)/((1-x)^2*(1+x+x^2)) + O(x^100))) \\ _Colin Barker_, Jan 28 2016 %Y A267711 Cf. A267540. %K A267711 nonn,easy %O A267711 1,3 %A A267711 _Mikk Heidemaa_, Jan 19 2016