cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267719 T(n,k)=Number of nXk 0..1 arrays with every repeated value in every row and column greater than the previous repeated value.

This page as a plain text file.
%I A267719 #4 Jan 19 2016 20:17:14
%S A267719 2,4,4,6,16,6,9,36,36,9,12,81,102,81,12,16,144,270,270,144,16,20,256,
%T A267719 546,872,546,256,20,25,400,1080,1915,1915,1080,400,25,30,625,1866,
%U A267719 4266,4444,4266,1866,625,30,36,900,3186,7879,10489,10489,7879,3186,900,36,42,1296
%N A267719 T(n,k)=Number of nXk 0..1 arrays with every repeated value in every row and column greater than the previous repeated value.
%C A267719 Table starts
%C A267719 ..2....4....6.....9.....12.....16.....20......25......30.......36.......42
%C A267719 ..4...16...36....81....144....256....400.....625.....900.....1296.....1764
%C A267719 ..6...36..102...270....546...1080...1866....3186....5010.....7830....11550
%C A267719 ..9...81..270...872...1915...4266...7879...14632...24440....40816....63714
%C A267719 .12..144..546..1915...4444..10489..20226...39485...68430...119560...192852
%C A267719 .16..256.1080..4266..10489..26906..54887..114392..209470...385962...656670
%C A267719 .20..400.1866..7879..20226..54887.116036..255009..481390...932245..1627470
%C A267719 .25..625.3186.14632..39485.114392.255009..592110.1179367..2391952..4403235
%C A267719 .30..900.5010.24440..68430.209470.481390.1179367.2411426..5148115..9689432
%C A267719 .36.1296.7830.40816.119560.385962.932245.2391952.5148115.11438402.22656990
%H A267719 R. H. Hardin, <a href="/A267719/b267719.txt">Table of n, a(n) for n = 1..543</a>
%F A267719 Empirical for column k:
%F A267719 k=1: a(n) = 2*a(n-1) -2*a(n-3) +a(n-4)
%F A267719 k=2: a(n) = 2*a(n-1) +2*a(n-2) -6*a(n-3) +6*a(n-5) -2*a(n-6) -2*a(n-7) +a(n-8)
%F A267719 k=3: [order 12]
%F A267719 k=4: [order 16] for n>18
%F A267719 k=5: [order 20] for n>22
%F A267719 k=6: [order 24] for n>27
%F A267719 k=7: [order 28] for n>30
%e A267719 Some solutions for n=5 k=4
%e A267719 ..1..0..0..1....0..1..1..0....1..1..0..1....0..1..1..0....1..0..0..1
%e A267719 ..1..0..1..1....1..0..0..1....0..1..1..0....1..0..0..1....1..0..1..1
%e A267719 ..0..1..0..0....0..1..1..0....1..0..1..1....0..0..1..0....0..1..0..0
%e A267719 ..1..1..0..1....1..0..1..1....0..1..0..0....0..1..0..0....1..0..1..1
%e A267719 ..0..0..1..0....1..1..0..1....1..0..1..0....1..1..0..1....0..1..0..0
%Y A267719 Column 1 is A002620(n+2).
%Y A267719 Column 2 is A030179(n+2).
%K A267719 nonn,tabl
%O A267719 1,1
%A A267719 _R. H. Hardin_, Jan 19 2016