A267729 Number of n X 2 0..1 arrays with every repeated value in every row and column greater than or equal to the previous repeated value.
4, 16, 64, 225, 784, 2601, 8464, 26896, 84100, 259081, 788544, 2374681, 7086244, 20976400, 61653904, 180069561, 522945424, 1510954641, 4345446400, 12444741136, 35502850084, 100926300721, 285976813824, 807886380625, 2275928269924
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0....0..1....0..1....1..0....1..1....0..0....1..1....0..0....1..1....0..1 ..1..0....0..0....0..1....0..0....1..1....1..0....0..0....0..0....1..1....1..0 ..0..0....1..0....0..1....1..1....0..1....0..1....1..1....0..0....0..0....1..1 ..0..1....1..0....1..1....0..0....1..0....0..1....1..0....1..0....1..1....1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A267735.
Formula
Empirical: a(n) = 6*a(n-1) - 6*a(n-2) - 19*a(n-3) + 24*a(n-4) + 24*a(n-5) - 19*a(n-6) - 6*a(n-7) + 6*a(n-8) - a(n-9).
Empirical g.f.: x*(4 - 8*x - 8*x^2 + 13*x^3 + 26*x^4 - 17*x^5 - 7*x^6 + 6*x^7 - x^8) / ((1 + x)^3*(1 - 3*x + x^2)^3). - Colin Barker, Mar 21 2018
Comments