This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A267747 #39 Sep 08 2022 08:46:15 %S A267747 0,1,30,31,60,61,90,91,120,121,150,151,180,181,210,211,240,241,270, %T A267747 271,300,301,330,331,360,361,390,391,420,421,450,451,480,481,510,511, %U A267747 540,541,570,571,600,601,630,631,660,661,690,691,720,721,750,751,780,781,810,811,840 %N A267747 Numbers k such that k mod 2 = k mod 3 = k mod 5. %C A267747 Numbers k such that k == 0 or 1 (mod 30). - _Robert Israel_, Jan 20 2016 %H A267747 Colin Barker, <a href="/A267747/b267747.txt">Table of n, a(n) for n = 1..1000</a> %H A267747 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1). %F A267747 a(n) = 15*n - 7*(-1)^n - 22. %F A267747 G.f.: x^2*(29*x+1)/((x-1)^2*(x+1)). %t A267747 Table[15*n - 7*(-1)^n - 22, {n, 1000}] (* Or *) %t A267747 Select[ Range[0, 20000], (Mod[#, 2]==Mod[#, 3]==Mod[#, 5]) &] %t A267747 LinearRecurrence[{1,1,-1},{0,1,30},60] (* _Harvey P. Dale_, Nov 15 2021 *) %o A267747 (PARI) concat(0, Vec(x^2*(29*x+1)/((x-1)^2*(x+1)) + O(x^60))) \\ _Colin Barker_, Jan 21 2016 %o A267747 (Magma) [15*n-7*(-1)^n-22: n in [1..60]]; // _Vincenzo Librandi_, Jan 21 2016 %Y A267747 Cf. A267711. %K A267747 nonn,easy %O A267747 1,3 %A A267747 _Mikk Heidemaa_, Jan 20 2016