A267752
Number of 4Xn arrays containing n copies of 0..4-1 with every element equal to or 1 greater than any north neighbor modulo 4 and the upper left element equal to 0.
Original entry on oeis.org
1, 8, 118, 2386, 54956, 1350674, 34568612, 910791802, 24537293344, 672857207788, 18718820026952, 527018609703106, 14988164468962816, 429939684328203092, 12424959589420164728, 361409602487910188762, 10572662501852062471576
Offset: 1
Some solutions for n=4
..0..0..3..2....0..3..3..1....0..3..1..3....0..2..0..2....0..1..1..3
..1..1..3..2....1..0..0..2....1..3..2..0....1..2..0..3....0..2..1..3
..2..1..0..2....2..0..1..3....2..0..2..0....1..3..1..3....0..2..2..3
..3..1..0..3....2..1..2..3....3..1..2..1....1..0..2..3....1..2..3..0
A267753
Number of 5Xn arrays containing n copies of 0..5-1 with every element equal to or 1 greater than any north neighbor modulo 5 and the upper left element equal to 0.
Original entry on oeis.org
1, 11, 313, 13451, 679735, 37668275, 2218059985, 136270559675, 8639673619975, 561345949073501, 37199029884576055, 2505536459782428275, 171083113958746029535, 11818808909940579018035, 824717389713663500108473
Offset: 1
Some solutions for n=4
..0..0..2..4....0..0..2..4....0..4..2..1....0..2..1..1....0..4..2..3
..1..0..3..4....1..1..3..0....1..4..3..1....0..3..2..1....0..0..2..4
..2..1..3..0....1..2..4..0....1..0..3..2....1..4..3..2....1..1..3..4
..2..2..4..1....2..3..4..1....2..0..3..3....2..4..4..3....2..1..3..4
..3..3..4..1....3..3..4..2....2..0..4..4....3..0..0..4....2..1..3..0
A267748
Number of n X 3 arrays containing 3 copies of 0..n-1 with every element equal to or 1 greater than any north neighbor modulo n and the upper left element equal to 0.
Original entry on oeis.org
1, 10, 39, 118, 313, 780, 1789, 4024, 8793, 18760, 39577, 82662, 170677, 350758, 717189, 1458604, 2959003, 5987586
Offset: 1
Some solutions for n=4:
..0..0..2....0..3..2....0..1..1....0..3..3....0..2..2....0..1..3....0..2..0
..1..1..3....0..3..2....1..2..2....1..0..0....1..3..2....1..2..3....1..3..1
..2..1..3....1..0..2....2..3..3....2..1..1....1..3..3....2..3..0....2..3..1
..3..2..0....1..1..3....3..0..0....3..2..2....1..0..0....2..0..1....3..0..2
A267749
Number of nX4 arrays of permutations of 4 copies of 0..n-1 with every element equal to or 1 greater than any north neighbor modulo n and the upper left element equal to 0.
Original entry on oeis.org
1, 35, 357, 2386, 13451, 68151, 314491, 1381976, 5796165, 23520067, 92980625
Offset: 1
Some solutions for n=4
..0..3..2..0....0..0..1..3....0..1..0..3....0..1..3..2....0..0..3..2
..1..3..3..1....1..1..2..3....1..1..0..3....0..1..3..3....1..1..3..2
..2..0..3..1....2..1..3..3....2..2..0..3....1..2..3..0....1..2..3..3
..2..1..0..2....2..2..0..0....2..2..1..3....2..2..0..1....1..2..0..0
A267750
Number of nX5 arrays of permutations of 5 copies of 0..n-1 with every element equal to or 1 greater than any north neighbor modulo n and the upper left element equal to 0.
Original entry on oeis.org
1, 126, 3471, 54956, 679735, 7280046, 69784981, 619463736
Offset: 1
Some solutions for n=4
..0..1..0..3..3....0..3..1..2..0....0..1..1..3..2....0..0..2..1..0
..0..2..1..3..3....1..0..2..2..1....0..1..2..3..2....1..1..2..2..0
..1..2..2..3..0....2..0..2..3..1....1..2..3..0..3....2..1..3..3..0
..1..2..2..0..1....3..0..3..3..1....1..2..0..0..3....3..2..3..3..1
A267754
Number of 6Xn arrays containing n copies of 0..6-1 with every element equal to or 1 greater than any north neighbor modulo 6 and the upper left element equal to 0.
Original entry on oeis.org
1, 15, 780, 68151, 7280046, 873319806, 113187903900, 15506951007015, 2214490608127986, 326564039118851370
Offset: 1
Some solutions for n=4
..0..2..3..5....0..2..1..5....0..4..2..0....0..5..2..3....0..2..5..1
..0..2..3..5....1..3..2..5....1..5..2..0....1..0..2..4....0..3..5..2
..0..2..4..0....2..4..3..0....2..5..3..1....2..0..3..4....1..3..5..2
..1..3..4..1....2..4..4..0....3..5..4..1....2..1..4..4....2..4..0..3
..2..4..5..1....3..4..5..1....3..0..4..2....3..1..5..5....3..5..1..4
..3..4..5..1....3..5..0..1....4..1..5..3....3..1..5..0....4..0..1..4
Showing 1-6 of 6 results.
Comments