cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267757 Number of terms of A072873 less than or equal to 10^n.

Original entry on oeis.org

2, 5, 9, 15, 25, 36, 52, 73, 98, 129, 167, 213, 270, 338, 421, 517, 632, 768, 920, 1102, 1311, 1547, 1824, 2143, 2501, 2911, 3379, 3906, 4493, 5164, 5920, 6757, 7704, 8765, 9943, 11247, 12706, 14324, 16103, 18078, 20268, 22666, 25315, 28239, 31437, 34941, 38785, 43002
Offset: 1

Views

Author

Robert G. Wilson v, Jan 20 2016

Keywords

Crossrefs

Cf. A072873 (numbers n such that sum( e(i)/p(i) ) is an integer, where the prime factorization of n is Product( p(i)^e(i) )).

Programs

  • Mathematica
    mx = 10^108; lst = Sort@ Flatten@ Table[
    2^a*3^b*5^c*7^d*11^e*13^f*17^g*19^h*23^i*29^j*31^k*37^l*41^m*43^n*47^o*53^p,
    {a, 0, Log[ 2, mx],2},
    {b, 0, Log[ 3, mx/ 2^a], 3},
    {c, 0, Log[ 5, mx/(2^a*3^b)], 5},
    {d, 0, Log[ 7, mx/(2^a*3^b*5^c)], 7},
    {e, 0, Log[11, mx/(2^a*3^b*5^c*7^d)], 11},
    {f, 0, Log[13, mx/(2^a*3^b*5^c*7^d*11^e)], 13},
    {g, 0, Log[17, mx/(2^a*3^b*5^c*7^d*11^e*13^f)], 17},
    {h, 0, Log[19, mx/(2^a*3^b*5^c*7^d*11^e*13^f*17^g)], 19},
    {i, 0, Log[23, mx/(2^a*3^b*5^c*7^d*11^e*13^f*17^g*19^h)], 23},
    {j, 0, Log[29, mx/(2^a*3^b*5^c*7^d*11^e*13^f*17^g*19^h*23^i)], 29},
    {k, 0, Log[31, mx/(2^a*3^b*5^c*7^d*11^e*13^f*17^g*19^h*23^i*29^j)], 31},
    {l, 0, Log[37, mx/(2^a*3^b*5^c*7^d*11^e*13^f*17^g*19^h*23^i*29^j*31^k)], 37},
    {m, 0, Log[41, mx/(2^a*3^b*5^c*7^d*11^e*13^f*17^g*19^h*23^i*29^j*31^k*37^l)], 41},
    {n, 0, Log[43, mx/(2^a*3^b*5^c*7^d*11^e*13^f*17^g*19^h*23^i*29^j*31^k*37^l*41^m)], 43},
    {o, 0, Log[47, mx/(2^a*3^b*5^c*7^d*11^e*13^f*17^g*19^h*23^i*29^j*31^k*37^l*41^m*43^n)], 47},
    {p, 0, Log[53, mx/(2^a*3^b*5^c*7^d*11^e*13^f*17^g*19^h*23^i*29^j*31^k*37^l*41^m*43^n*47^o)], 53},
    {q, 0, Log[59, mx/(2^a*3^b*5^c*7^d*11^e*13^f*17^g*19^h*23^i*29^j*31^k*37^l*41^m*43^n*47^o*53^p)], 59}]; Table[ Length@ Select[lst, # <= 10^n &], {n, 108}]