A267783 Number of n X 3 0..1 arrays with every repeated value in every row greater than or equal to, and in every column greater than, the previous repeated value.
8, 64, 216, 729, 1728, 4096, 8000, 15625, 27000, 46656, 74088, 117649, 175616, 262144, 373248, 531441, 729000, 1000000, 1331000, 1771561, 2299968, 2985984, 3796416, 4826809, 6028568, 7529536, 9261000, 11390625, 13824000, 16777216
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0..1....0..0..0....0..1..1....0..0..0....0..0..0....0..0..0....1..1..0 ..1..0..0....1..0..1....0..1..0....1..1..0....1..1..0....1..0..1....1..0..1 ..1..1..1....1..1..1....1..0..1....0..1..1....1..1..1....1..1..0....0..1..1 ..0..0..0....0..0..0....0..1..0....0..0..0....0..0..1....0..0..1....1..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 3 of A267788.
Formula
Empirical: a(n) = 2*a(n-1) + 4*a(n-2) - 10*a(n-3) - 5*a(n-4) + 20*a(n-5) - 20*a(n-7) + 5*a(n-8) + 10*a(n-9) - 4*a(n-10) - 2*a(n-11) + a(n-12).
Empirical g.f.: x*(8 + 48*x + 56*x^2 + 121*x^3 + 86*x^4 + 44*x^5 - 14*x^6 + 6*x^7 + 10*x^8 - 4*x^9 - 2*x^10 + x^11) / ((1 - x)^7*(1 + x)^5). - Colin Barker, Jan 11 2019